DOI QR코드

DOI QR Code

스크린 프린팅 공법을 통한 방사선 무연 차폐 시트에 관한 연구

The Study on Filling Factor of Radiation Shielding Lead-free Sheet Via Screen Printing Method

  • 강상식 (한국국제대학교 방사선융합기술연구소) ;
  • 정아림 (한국국제대학교 방사선학과) ;
  • 이수민 (한국국제대학교 방사선학과) ;
  • 양승우 (한국국제대학교 방사선학과) ;
  • 김교태 (인제대학교 소프트웨어교육원) ;
  • 허예지 (인제대학교 의료영상연구소) ;
  • 박지군 (한국국제대학교 방사선융합기술연구소)
  • Kang, Sang-Sik (Institute of Radiation Fusion Technology, International University of Korea) ;
  • Jeong, Ah-Rim (Department of Radiological Science, International University of Korea) ;
  • Lee, Su-Min (Department of Radiological Science, International University of Korea) ;
  • Yang, Seung-Woo (Department of Radiological Science, International University of Korea) ;
  • Kim, Kyo-Tae (Software Education Institute, Inje University) ;
  • Heo, Ye-Ji (Department of Medical Imaging Research Institute, Inje University) ;
  • Park, Ji-Koon (Institute of Radiation Fusion Technology, International University of Korea)
  • 투고 : 2018.10.15
  • 심사 : 2018.11.30
  • 발행 : 2018.11.30

초록

많은 선행 연구에서는 무연 차폐재를 제작하기 위하여 몬테카를로 시뮬레이션을 통해 방사선 차폐 능력과 경량화에 대한 가능성을 제시하고 있다. 하지만, 이는 바인더 및 미세 기공에 대한 구현이 어렵기에 제품화 공정에 필요한 정보를 충분히 제공하지 못하는 실정이다. 이에 본 연구에서는 제품화 공정에 요구되는 겔 페이스트에 대한 정보를 사전에 제공하기 위하여 스크린 프린팅 공법을 활용하여 충전율에 따른 방사선 차폐 능력에 대한 결과를 제시하였다. 본 연구에서는 방사선 차폐 능력을 평가하기 위해 IEC 61331-1: 2014와 KS A 4025에 부합하도록 실험 환경을 설계하였으며, 방사선 조사 조건은 KS A 4021 규격을 준용하여 총 여과 2.0 mmAl로 여과된 100 kVp를 이용하였다. 본 연구 결과, TVL를 기준으로 Pb $1270{\mu}m$, $BaSO_4$ $3035{\mu}m$, $Bi_2O_3$ $1849{\mu}m$, $WO_3$ $2631{\mu}m$에서 근사한 값으로 분석되었다. 또한, 충전율은 $BaSO_4$ 38.6%, $Bi_2O_3$ 27.1%, $WO_3$ 30.15%로 분석되었다. 하지만, 차후 저온고압 성형을 적용한다면 충전율을 높이면서도 기공률을 낮춤으로서 방사선 차폐 능력의 개선이 충분히 가능할 것으로 기대된다.

In many previous studies, monte carlo simulation is used to produce lead-free shielding sheet, and the possibility of radiation shielding capability and weight reduction is presented. But it is difficult to simulation for binder and micro-pores because of In fact it does not provide sufficient information necessary for the commercialization process. Therefore, in this paper, the results of radiation shielding capability corresponding to filling factor was presented by using the screen printing method to provide information on gel-paste required for the commercialization process. In this study, the geometric setup for evaluate of radiation shielding ability was designed to comply with IEC 61331-1:2014 and KS A 4025. In addition, radiation irradiation conditions were 100 kVp filtered with 2.0 mmAl total filtration was applied according to KS A 4021 standard. In this study, Pb $1270{\mu}m$, $BaSO_4$ $3035{\mu}m$, $Bi_2O_3$ $1849{\mu}m$ and $WO_3$ $2631{\mu}m$ were analyzed based on ten value layer. Additionally, the filling factor was analyzed as $BaSO_4$ 38.6%, $Bi_2O_3$ 27.1%, $WO_3$ 30.15%. However, in the case of applying low-temperature high-pressure molding in the future, it is expected that the radiation shielding capability can be sufficiently improved by reducing the porosity while increasing the filling factor.

키워드

BSSHB5_2018_v12n6_713_f0001.png 이미지

Fig. 1. Fabrication process of lead-free shielding sheet via screen printing method.

BSSHB5_2018_v12n6_713_f0002.png 이미지

Fig. 2. Schematic diagram of geometrical setup for evaluation of radiation shielding capability.

BSSHB5_2018_v12n6_713_f0003.png 이미지

Fig. 3. Fabricated specimen for evaluation of radiation shielding capability.

BSSHB5_2018_v12n6_713_f0004.png 이미지

Fig. 4. Radiation transmission efficiency as a function of thickness.

Table 1. Calculated of physical properties

BSSHB5_2018_v12n6_713_t0001.png 이미지

참고문헌

  1. International Electronical Committee, "Protective devices against diagnostic medical X-radiation Part 1: Determination of attenuation properties of materials," IEC Report 61331-1, 2014.
  2. International Electronical Committee, "Protective devices against diagnostic medical X-radiation Part 3: Protective clothing, eyewear and protective patient shields," IEC Report 61331-3, 2014.
  3. S. C. Kim, K. T. Kim, J. K. Park, "Barkum compounds through Mote Carlo simulation compare the performance of medical radiation shielding analysis," Journal of the Korean Society of Radiology, Vol. 7, No. 6, pp. 403 - 408, 2013. https://doi.org/10.7742/jksr.2013.7.6.403
  4. S. S. Kang, K. T. Kim, S. C. Noh, B. J. Jung, J. K. Park, "The Study on Design of Customized Radiation Protective Layer for Medical Radiation Dose Reduction," Journal of the Korean Society of Radiology, Vol. 8, No. 6, pp. 333-338, 2014. https://doi.org/10.7742/jksr.2014.8.6.333
  5. J. K. Park, I. H. Choi, H. H. Park, S. W. Yang, K. T. Kim, S. S. Kang, "Design of Double Layer Shielding Structure using Eco-friendly Shielding Materials," Journal of the Korean Society of Radiology, Vol. 10, No. 8, pp. 559-563, 2016. https://doi.org/10.7742/jksr.2016.10.8.559
  6. S. C. Kim, M. W. Park, "Development of radiation shielding sheet with environmentally-friendly materials; II Evaluation of barum, tourmaline, silicon polymers in the radiation shielding sheet," Journal of radiological science and technology, Vol. 34, No. 2, pp. 141-147, 2011.
  7. D. K. Kim, K. T. Kim, J. E. Park, J. Y. Hong, J. S. Kim, K. M. Oh, S. H. Nam, "Evaluation of High Absorption Photoconductor for Application to Auto Exposure Control Sensor by Screen Printing Method," Journal of the Korean Society of Radiology, Vol. 9, No. 2, pp. 67-72, 2015. https://doi.org/10.7742/jksr.2015.9.2.67
  8. K. S. Chon, "Monte Carlo simulation for Radiation Protection Sheets of Pb-Free," Journal of the Korean Society of Radiology, Vol. 11, No. 4, pp. 189-195, 2016. https://doi.org/10.7742/JKSR.2017.11.4.189