DOI QR코드

DOI QR Code

전기이중층 커패시터용 내재적 미세 다공성 고분자 기반 3차원 다공성 탄소 전극

Intrinsic Porous Polymer-derived 3D Porous Carbon Electrodes for Electrical Double Layer Capacitor Applications

  • 한재희 (한국화학연구원 분리막연구센터) ;
  • 서동학 (한양대학교 화학공학과) ;
  • 김태호 (한국화학연구원 분리막연구센터)
  • Han, Jae Hee (Membrane Research Center, Korea Research Institute of Chemical Technology) ;
  • Suh, Dong Hack (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Tae-Ho (Membrane Research Center, Korea Research Institute of Chemical Technology)
  • 투고 : 2018.09.28
  • 심사 : 2018.10.09
  • 발행 : 2018.12.10

초록

내재적 미세 다공성 고분자(polymer of intrinsic microporosity, PIM-1)를 사용하여 빈용매 유도 상전이법으로부터 3차원 다공성 구조를 가지는 필름을 형성하고, 이를 탄화하여 3차원 다공성 탄소(cNPIM)를 제조하였다. 전자주사현미경 분석을 통해 상전이 공정을 적용한 탄소소재가 마이크로, 메조, 매크로 기공을 모두 가지면서 서로 연결된 계층적 3차원 다공구조를 나타냄을 확인하였다. 특히 상전이 공정의 용매의 함량비를 조절함으로써 기공구조를 제어할 수 있었으며, 결과적으로 평균 0.75 nm의 기공 크기와 $2101.1m^2/g$의 높은 비표면적을 가지면서 약 30%의 메조, 마크로 기공구조를 겸비한 최적화된 다공성 탄소 전극을 제조할 수 있었다. 제조된 3차원 다공성 탄소소재를 전기이중층 캐퍼시터용 전극물질로 사용하여 수계전해질에서 측정한 결과, 높은 비표면적을 가지는 탄소 소재 내의 비약적 이온 이동속도 향상 효과로 높은 비축전용량(304.8 F/g@10 mV/s)과 우수한 충 방전 속도(77% 용량유지율@100 mV/s)를 나타내었다.

3D porous carbon electrodes (cNPIM), prepared by solution casting of a polymer of intrinsic microporosity (PIM-1) followed by nonsolvent-induced phase separation (NIPS) and carbonization are presented. In order to effectively control the pore size of 3D porous carbon structures, cNPIM was prepared by varying the THF ratio of mixed solvents. The SEM analysis revealed that cNPIMs have a unique 3D macroporous structure having a gradient pore structure, which is expected to grant a smooth and easy ion transfer capability as an electrode material. In addition, the cNPIMs presented a very large specific surface area ($2,101.1m^2/g$) with a narrow micropore size distribution (0.75 nm). Consequently, the cNPIM exhibits a high specific capacitance (304.8 F/g) and superior rate capability of 77% in an aqueous electrolyte. We believe that our approach can provide a variety of new 3D porous carbon materials for the application to an electrochemical energy storage.

키워드

GOOOB2_2018_v29n6_759_f0001.png 이미지

Figure 1. Photographs of PIM-1 film, NPIM, and cNPIM.

GOOOB2_2018_v29n6_759_f0002.png 이미지

Figure 2. SEM images of (a) NPIM-0, (b) NPIM-3, (c) NPIM-5, and (d) NPIM-7.

GOOOB2_2018_v29n6_759_f0003.png 이미지

Figure 3. SEM images of (a) cNPIM-0, (b) cNPIM-3, (c) cNPIM-5, and (d) cNPIM-7.

GOOOB2_2018_v29n6_759_f0004.png 이미지

Figure 4. (a) N2 adsorption-desorption isotherms, and (b) pore size distribution of cNPIM-0 and cNPIM-7.

GOOOB2_2018_v29n6_759_f0005.png 이미지

Figure 5. In three-electrode configuration, (a) CV curves and (b) rate dependent capacitances of cNPIM-0, cNPIM-3, cNPIM-5, and cNPIM-7.

GOOOB2_2018_v29n6_759_f0006.png 이미지

Figure 6. Nyquist plots of cNPIM-0, cNPIM-3, and cNPIM-7.

Table 1. Non-solvent Induced Phase Separation Conditions of Porous Polymer Films

GOOOB2_2018_v29n6_759_t0001.png 이미지

Table 2. Textural Parameters of 3D Porous Carbon Electrode (cNPIM-7) and Non-porous Carbon Electrode (cNPIM-0)

GOOOB2_2018_v29n6_759_t0002.png 이미지

Table 3. In Three-electrode System, Comparison of the Surface Area and Specific Capacitance of Electrodes for SCs in Aqueous Electrolyte

GOOOB2_2018_v29n6_759_t0003.png 이미지

참고문헌

  1. H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, Progress in electrical energy storage system: A critical review, Prog. Nat. Sci., 19, 291-312 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014
  2. A. Aktas, K. Erhan, S. Ozdemir, and E. Ozdemir, Experimental investigation of a new smart energy management algorithm for a hybrid energy storage system in smart grid applications, Electric Power Syst. Res., 144, 185-196 (2017). https://doi.org/10.1016/j.epsr.2016.11.022
  3. A. Gonzalez, E. Goikolea, J. A. Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sustain. Energy Rev., 58, 1189-1206 (2016). https://doi.org/10.1016/j.rser.2015.12.249
  4. G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41, 797-828 (2012). https://doi.org/10.1039/C1CS15060J
  5. A. G. Pandolfo and A. F. Hollenkamp, Carbon properites and their role in supercapacitors, J. Power Sources, 157, 11-27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
  6. R. Liu, L. Wan, S, Liu, L. Pan, D. Wu, and D. Zhao, An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors, Adv. Funct. Mater., 25, 526-533 (2015). https://doi.org/10.1002/adfm.201403280
  7. K. Sheng, Y. Sun, C. Li, W. Yuan, and F. Shi, Ultrahigh-rate supercapacitors based on electrochemically reduced graphene oxide for ac line-filtering, Sci. Rep., 2, 247-252 (2012). https://doi.org/10.1038/srep00247
  8. J. Chmiola, G. Yuschin, Y. Gotosi, C. Portet, P. Simon, and P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313, 1760-1763 (2006). https://doi.org/10.1126/science.1132195
  9. B. M. Yoo and H. B. Park, Current status and perspectives of graphene- based membranes for gas separation, Membr. J., 27, 216-225 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.216
  10. J. E. Shin and H. B. Park, Gas Separation properties of microporous carbon membranes containing mesopores, Membr. J., 28, 221-232 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.4.221
  11. P. M. Budd, E. S. Elabas, B. S. Ghanem, S. Makhseed, N. B. Mckeown, K. J. Msayib, C. E. Tattershall, and D. Wang, Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity, Adv. Mater., 16, 456-459 (2004). https://doi.org/10.1002/adma.200306053
  12. J. S. Bonso, G. D, Kalaw, and J. P. Ferraris, High surface area carbon nanofibers derived from electrospun PIM-1 for energy storage applications, J. Mater. Chem. A, 2, 418-424 (2014). https://doi.org/10.1039/C3TA13779A
  13. J. W. Jeon, J. H. Han, S. K. Kim, D. G. Kim, Y. S. Kim, D. S. Suh, Y. T. Hong, T. H. Kim, and B. G. Kim, Intrinsically microporous polymer-based hierarchical nanostructuring of electrodes via nonsolvent-induced phase separation for high-performance supercapacitors, J. Mater. Chem. A, 6, 8909-8915 (2018). https://doi.org/10.1039/C8TA02451K
  14. A. Venault, Y. Chang, D. M. Wang, and D. Bouyer, A Review on polymeric membranes and hygrovels prepared by vapor-induced phase separation process, Polym. Rev., 53, 568-626 (2013). https://doi.org/10.1080/15583724.2013.828750
  15. S. J. Park, S. Y. Jin, and J. Wawasaki, Preparation and characterization of activated carbons based on polymeric resin with KOH-impregnation, J. Korean Ind. Eng. Chem., 14, 1111-1115 (2003).
  16. B. G. Choi, Y. S. Huh, and W. H. Hong, Electrochemical characterization of porous graphene film for supercapacitor electrode, Korean Chem. Eng. Res., 50, 754-757 (2012). https://doi.org/10.9713/kcer.2012.50.4.754
  17. P. C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes, ACS Nano, 4, 4403-4411 (2010). https://doi.org/10.1021/nn100856y
  18. Z. Li, Y. Mi, X. Liu, S. Liu, S. Yang, and J. Wang, Flexible graphene/$MnO_2$ composite papers for supercapacitor electrodes, J. Mater. Chem., 21, 14706-14711 (2011). https://doi.org/10.1039/c1jm11941a
  19. J. Xu, Q. Gao, Y. Zhang, Y. Tan, W. Tian, L. Zhu, and L. Jiang, Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials, Sci. Rep., 4, 5545-5551 (2014).
  20. Z. Li, Z. Xu, H. Wang, J. Ding, B. Zahiri, C. M. B. Holt, X. Tan, and D. Mitlin, Colossal pseudocapacitance in a high functionality- high surface area carbon anode doubles the energy of an asymmetric supercapacitor, Energy Environ. Sci., 7, 1708-1718 (2014). https://doi.org/10.1039/C3EE43979H
  21. F. Li, M. Morris, and K. Y. Chan, Electrochemical capacitance and ionic transport in the mesoporous shell of a hierarchical porous core-shell carbon structure, J. Mater. Chem., 21, 8880-8886 (2011). https://doi.org/10.1039/c1jm10854a
  22. L. Wei and G. Yushin, Electrical double layer capacitors with activated sucrose-derived carbon electrodes, Carbon, 49, 4830-4838 (2011). https://doi.org/10.1016/j.carbon.2011.07.003
  23. K. T. Cho, S. B. Lee, and H. W. Lee, Facile synthesis of highly electrocapacitive nitrogen-doped graphitic porous carbons, J. Phys. Chem. C, 118, 9357-9367 (2014).
  24. C. Portet, P. L. Taberna, P. Simon, and C. L. Rovert, Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications, Electrochim. Acta, 49, 905-912 (2004). https://doi.org/10.1016/j.electacta.2003.09.043