DOI QR코드

DOI QR Code

The Effect of Fluorination on Wettability between Cokes and Binder Pitch for Carbon Block with High Density

고밀도 탄소블럭 제조를 위한 코크스와 바인더피치의 젖음성에 미치는 불소화의 영향

  • Kim, Kyung Hoon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • An, Donghae (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Ji Wook (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 김경훈 (충남대학교 응용화학공학과) ;
  • 안동해 (충남대학교 응용화학공학과) ;
  • 김지욱 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2018.07.11
  • Accepted : 2018.08.13
  • Published : 2018.12.10

Abstract

In this study, the carbon block was prepared using the fluorinated coke and binder pitch by molding compression to increase its density. After fluorination, it is confirmed that the fluorine element on the coke surface was introduced up to 24.14 at% using XPS analysis. The wettability between the fluorinated coke and binder pitch was evaluated according to the reaction temperature. From the result of contact-angle tests, it can be found that the wettability was improved up to 64.7% as more fluorine atoms were introduced on the surface of cokes. Also, the density of the carbon block with the highest amount of fluorine increased with 6.8% compared to that of using the carbon block prepared by the untreated cokes.

본 연구에서는 탄소블럭의 고밀도화를 위하여 불소화 표면처리된 코크스와 바인더피치를 압축성형으로 탄소블럭을 제조하였다. 불소화 표면처리 후 코크스 표면에 불소원소는 XPS 분석을 통하여 최대 24.14 at%가 도입된 것을 확인하였다. 불소화된 코크스와 바인더피치의 젖음성을 반응온도에 따라 평가하였다. 접촉각 측정 결과로부터 불소원소가 코크스 표면에 도입될수록 바인더피치와의 젖음성이 약 64.7% 향상됨을 알 수 있었다. 또한, 불소가 가장 많이 도입된 탄소블럭의 밀도는 미처리된 코크스로부터 제조된 탄소블럭의 밀도 대비 최대 6.8% 증가하였다.

Keywords

GOOOB2_2018_v29n6_677_f0001.png 이미지

Figure 1. The schematic of apparatus for wettability test between cokes and binder pitch.

GOOOB2_2018_v29n6_677_f0002.png 이미지

Figure 2. XPS survey spectra of the prepared cokes.

GOOOB2_2018_v29n6_677_f0003.png 이미지

Figure 3. The contact angle of the DI water and diiodomethane on the prepared cokes.

GOOOB2_2018_v29n6_677_f0004.png 이미지

Figure 4. The wettability test of cube-typed binder pitch onto the (a) RC, (b) FC-3 and (c) FC-6.

GOOOB2_2018_v29n6_677_f0005.png 이미지

Figure 5. SEM images of (a) RC, (b) FC-3 and (c) FC-6; (x-1) and (x-2) are fracture surface on ×40 and ×500, respectively; (x-3) is a smooth face on ×500.

GOOOB2_2018_v29n6_677_f0006.png 이미지

Figure 6. True density of the prepared carbon blocks.

Table 1. XPS Surface Elemental Analysis Parameters of the Prepared Cokes

GOOOB2_2018_v29n6_677_t0001.png 이미지

References

  1. M.-S. Park, S. Cho, E. Jeong, and Y.-S. Lee, Physico-chemical and electrochemical properties of pitch-based high crystallinity cokes used as electrode material for electric double layer capacitor, J. Ind. Eng. Chem., 23, 27-32 (2015). https://doi.org/10.1016/j.jiec.2014.07.038
  2. S.-M. Lee, D.-S. Kang, and J.-S. Roh, Bulk graphite: Materials and manufacturing process, Carbon Lett., 16, 135-146 (2015). https://doi.org/10.5714/CL.2015.16.3.135
  3. Y.-G. Wang, Y. Korai, and I. Mochida, Carbon disc of high density and strength prepared from synthetic pitch-derived mesocarbon microbeads, Carbon, 37, 1049-1057 (1999). https://doi.org/10.1016/S0008-6223(98)00298-X
  4. I. Mochida, R. Fujiura, T. Kojima, H. Sakamoto, and T. Yoshimura, Carbon disc of high density and strength prepared from heat-treated mesophase pitch grains, Carbon, 33, 265-274 (1995). https://doi.org/10.1016/0008-6223(94)00134-L
  5. Y. Zhao, J. Shi, H. Wang, Z. Tao, Z. Liu, Q. Guo, and L. Liu, A sandwich structure graphite block with excellent thermal and mechanical properties reinforced by in-situ grown carbon nanotubes, Carbon, 51, 427-430 (2013). https://doi.org/10.1016/j.carbon.2012.08.053
  6. E. Savage, Carbon-Carbon Composites, 323-354, Springer, Netherlands (1993).
  7. J. G. Kim, J. H. Kim, J. S. Im, Y.-S. Lee, and T.-S. Bae, Empirical study of petroleum-based pitch production via pressureand temperature-controlled thermal reactions, J. Ind. Eng. Chem., 62, 176-184 (2018). https://doi.org/10.1016/j.jiec.2017.12.055
  8. B. C. Bai, J. G. Kim, J. H. Kim, C. W. Lee, Y.-S. Lee, and J. S. Im, Blending effect of pyrolyzed fuel oil and coal tar in pitch production for artificial graphite, Carbon Lett., 25, 78-83 (2018).
  9. S.-M. Lee, D.-S. Kang, H.-S. Kim, and J.-S. Roh, Changes in the porosity of bulk graphite according to the viscosity of resin for impregnation, Carbon Lett., 16, 132-134 (2015). https://doi.org/10.5714/CL.2015.16.2.132
  10. J.-H. Kim and Y.-S. Lee, Characteristics of a high compressive strength graphite foam prepared from pitches using a PVA-AAc solution, J. Ind. Eng. Chem., 30, 127-133 (2015). https://doi.org/10.1016/j.jiec.2015.05.013
  11. S. Hussain, A. Trzcinski, H. Asghar, H. Sattar, N. Brown, and E. Roberts, Disinfection performance of adsorption using graphite adsorbent coupled with electrochemical regeneration for various microorganisms present in water, J. Ind. Eng. Chem., 44, 216-225 (2016). https://doi.org/10.1016/j.jiec.2016.09.009
  12. L. Yingquan, Z. Zhengde, D. Chaoquan, and S. Yusheng, Investigation of brazing structure of bulk graphite to a W-Re substrate, Mater. Charact., 44, 425-429 (2000). https://doi.org/10.1016/S1044-5803(00)00062-0
  13. S. Ko, C. W. Lee, and J. S. Im, Petrochemical-waste-derived high-performance anode material for Li-ion batteries, J. Ind. Eng. Chem., 36, 125-131 (2016). https://doi.org/10.1016/j.jiec.2016.01.036
  14. F. Chevarin, K. Azari, D. Ziegler, R. Gauvin, M. Fafard, and H. Alamdari, Substrate effect of coke particles on the structure and reactivity of coke/pitch mixtures in carbon anodes, Fuel, 183, 123-131 (2016). https://doi.org/10.1016/j.fuel.2016.06.070
  15. A. Sarkar, D. Kocaefe, Y. Kocaefe, D. Sarkar, D. Bhattacharyay, B. Morais, and J. Chabot, Coke-pitch interactions during anode preparation, Fuel, 117, 598-607 (2014). https://doi.org/10.1016/j.fuel.2013.09.015
  16. V. G. Rocha, C. Blanco, R. Santamaria, E. I. Diestre, R. Menendez, and M. Granda, The effect of the substrate on pitch wetting behaviour, Fuel Process. Technol., 91, 1373-1377 (2010). https://doi.org/10.1016/j.fuproc.2010.05.007
  17. V. G. Rocha, C. Blanco, R. Santamaria, E. I. Diestre, R. Menendez, and M. Granda, An insight into pitch/substrate wetting behaviour. The effect of the substrate processing temperature on pitch wetting capacity, Fuel, 86, 1046-1052 (2007). https://doi.org/10.1016/j.fuel.2006.09.031
  18. V. Rocha, C. Blanco, R. Santamaria, E. Diestre, R. Menendez, and M. Granda, Pitch/coke wetting behaviour, Fuel, 84, 1550-1556 (2005).
  19. B. Petrova, T. Budinova, E. Ekinci, N. Petrov, and F. Yardim, Influence of pitch composition and surface properties of petroleum coke on their interaction during the preparation of carbon/carbon composites, Carbon, 45, 704-709 (2007). https://doi.org/10.1016/j.carbon.2006.12.004
  20. K. Li, K. Shen, Z.-H. Huang, W. Shen, G. Yang, J. Yang, and F. Kang, Wettability of natural microcrystalline graphite filler with pitch in isotropic graphite preparation, Fuel, 180, 743-748 (2016). https://doi.org/10.1016/j.fuel.2016.04.091
  21. K. H. Kim, S. Lee, M.-I. Kim, and Y.-S. Lee, The effect of carbon black on reforming of pyrolysis fuel oil for a binder pitch, Fuel, 206, 58-63 (2017). https://doi.org/10.1016/j.fuel.2017.05.056
  22. M.-S. Park, K. H. Kim, and Y.-S. Lee, Fluorination of single- walled carbon nanotube: The effects of fluorine on structural and electrical properties, J. Ind. Eng. Chem., 37, 22-26 (2016). https://doi.org/10.1016/j.jiec.2016.03.024
  23. M.-J. Jung, H.-R. Yu, and Y.-S. Lee, Preparation of fluorinated graphite with high fluorine content and high crystallinity, Carbon Lett., 26, 112-116 (2018).
  24. E. Jeong, B. H. Lee, S. J. Doh, I. J. Park, and Y.-S. Lee, Multifunctional surface modification of an aramid fabric via direct fluorination, J. Fluor. Chem., 141, 69-75 (2012). https://doi.org/10.1016/j.jfluchem.2012.06.010
  25. A. Almasian, G. C. Fard, M. Mirjalili, and M. P. Gashti, Fluorinated-PAN nanofibers: Preparation, optimization, characterization and fog harvesting property, Carbon, 62, 146-155 (2018).
  26. E. Jeong, T.-S. Bae, S.-M. Yun, S.-W. Woo, and Y.-S. Lee, Surface characteristics of low-density polyethylene films modified by oxyfluorination-assisted graft polymerization, Colloids Surf. A, 373, 36-41 (2011). https://doi.org/10.1016/j.colsurfa.2010.10.008
  27. J. H. Kim, J. G. Kim, C. W. Lee, K. B. Lee, and J. S. Im, Effect of added mesophase pitch during the pitch synthesis reaction of PFO, Carbon Lett., 23, 48-54 (2017).
  28. J.-H. Kim, K. H. Kim, M.-S. Park, T.-S. Bae, and Y.-S. Lee, Cu nanoparticle-embedded carbon foams with improved compressive strength and thermal conductivity, Carbon Lett., 17, 65-69 (2016). https://doi.org/10.5714/CL.2016.17.1.065
  29. J.-H. Kim and Y.-S. Lee, The effects of carbon coating onto graphite filler on the structure and properties of carbon foams, Carbon Lett., 21, 111-115 (2017). https://doi.org/10.5714/CL.2017.21.111