DOI QR코드

DOI QR Code

Effect of Physico-chemical Properties of Pt/TiO2 Catalyst on CO Oxidation at Room Temperature

Pt/TiO2 촉매의 물리화학적 특성이 CO 상온산화 반응에 미치는 영향 연구

  • Kim, Sung Chul (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University) ;
  • Kim, Geo Jong (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University)
  • 김성철 (경기대학교 환경에너지공학과) ;
  • 김거종 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2018.06.04
  • Accepted : 2018.07.30
  • Published : 2018.12.10

Abstract

In this study, the effect of $Pt/TiO_2$ catalysts on the CO oxidation reaction at room temperature was investigated using various $TiO_2$ supports with different physical properties to compare and evaluate $Pt/TiO_2$ catalysts. Physicochemical properties of the catalyst were alanyzed using XPS, CO-chemisorption, BET, and CO-TPD. As a result, when the active particle diameter was smaller, while the metal dispersion and surface area were larger, the CO room temperature oxidation reaction was better. These physical properties increased the number of active sites, causing the target material to increase the adsorption amount of CO. In addition, when the $O_2$-consumption increased, the CO-room temperature oxidation reaction activity increased due to the excellent oxygen-transferring ability.

본 연구에서는, $Pt/TiO_2$ 촉매의 물리화학적 특성이 CO 상온산화 반응에 미치는 영향을 조사하기 위하여 각기 다른 물리적 특성을 가지는 다양한 $TiO_2$ 지지체를 이용하여 $Pt/TiO_2$ 촉매를 제조한 후 평가하였다. 촉매의 물리화학적 특성을 조사하기 위하여 XPS, CO-chemisorption, BET, CO-TPD 분석을 수행하였다. 그 결과, active particle diameter가 작을수록, metal dispersion, surface area가 클수록 우수한 CO 상온산화 반응을 나타내었다. 이러한 물리적 특성은 active site의 수를 증진시켜 대상물질은 CO의 흡착량의 증가를 야기시켰다. 또한, $O_2$-consumption이 클수록 우수한 산소 전달 능력을 통해 보다 높은 CO 상온산화 반응활성을 나타내었다.

Keywords

GOOOB2_2018_v29n6_657_f0001.png 이미지

Figure 1. Effect of various TiO2 on CO conversion over 1% Pt/TiO2-X.

GOOOB2_2018_v29n6_657_f0002.png 이미지

Figure 2. XPS Pt 4f spectra of the Pt/various TiO2 catalysts.

GOOOB2_2018_v29n6_657_f0003.png 이미지

Figure 3. The effect of physical properties on CO conversion over 1% Pt/TiO2-X. (a) active particle diameter (b) metal dispersion (c) surface area.

GOOOB2_2018_v29n6_657_f0004.png 이미지

Figure 4. CO-TPD profiles of 1% Pt/TiO2-X catalysts.

GOOOB2_2018_v29n6_657_f0005.png 이미지

Figure 5. The effect of O2-consumption on CO conversion over 1% Pt/TiO2-X.

Table 1. Physical Characteristics of Pt/TiO2 Catalysts

GOOOB2_2018_v29n6_657_t0001.png 이미지

References

  1. M. Haruta, N. Yamada, T. Kobayashi, and S. lijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal., 115, 301-309 (1989). https://doi.org/10.1016/0021-9517(89)90034-1
  2. C. K. Costello, M. C. Kung, H.-S. Oh, Y. Wang, and H. W. Kung, Nature of the active site for CO oxidation on highly active $Au/{\gamma}-Al_2O_3$, Appl. Catal. A, 232, 159-168 (2002). https://doi.org/10.1016/S0926-860X(02)00092-3
  3. C. K. Costello, J. H. Yang, H. Y. Law, Y. Wang, J.-N. Lin, L. D. Marks, M. C. Kung, and H. H. Kung, On the potential role of hydroxyl groups in CO oxidation over Au/$Al_2O_3$, Appl. Catal. A, 243, 15-24 (2003). https://doi.org/10.1016/S0926-860X(02)00533-1
  4. H.-S. Oh, J. H. Yang, C. K. Costello, Y. M. Wang, S. R. Bare, H. H. Kung, and M. C. Kung, Selective catalytic oxidation of CO: Effect of chloride on supported Au catalysts, J. Catal., 210, 375-386 (2002). https://doi.org/10.1006/jcat.2002.3710
  5. C. K. Costello, J. Guzman, J. H. Yang, Y. M. Wang, M. C. Kung, B. C. Gates, and H. H. Kung, Activation of Au/c-$Al_2O_3$ catalysts for CO oxidation: Characterization by X-ray absorption near edge structure and temperature programmed reduction, J. Phys. Chem. B, 108, 12529-12536 (2004). https://doi.org/10.1021/jp048643e
  6. J. H. Yang, J. D. Henao, M. C. Raphulu, Y. Wang, T. Caputo, A. J. Groszek, M. C. Kung, M. S. Scurrell, J. T. Miller, and H. H. Kung, Activation of Au/$TiO_2$ catalyst for CO oxidation, J. Phys. Chem. B, 109, 10319-10326 (2005). https://doi.org/10.1021/jp050818c
  7. J. D. Henao, T. Caputo, J. H. Yang, M. C. Kung, and H. H. Kung, In situ Transient FTIR and XANES studies of the evolution of surface species in CO oxidation on Au/$TiO_2$, J. Phys. Chem. B, 110, 8689-8700 (2006). https://doi.org/10.1021/jp0568733
  8. S. M. Oxford, J. D. Henao, J. H. Yang, M. C. Kung, and H. H. Kung, Understanding the effect of halide poisoning in CO oxidation over Au/$TiO_2$, Appl. Catal. A, 339, 180-186 (2008). https://doi.org/10.1016/j.apcata.2008.01.025
  9. Y. Shen, G. Lu, Y. Guo, Y. Wang, Y. Guo, and X. Gong, Study on the catalytic reaction mechanism of low temperature oxidation of CO over Pd-Cu-Clx/$Al_2O_3$ catalyst, Catal. Today, 175, 558-567 (2011). https://doi.org/10.1016/j.cattod.2011.03.042
  10. S. Li, G. Liu, H. Lian, M. Jia, G. Zhao, D. Jiang, and W. Zhang, Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method, Catal. Commun., 9, 1045-1049 (2008). https://doi.org/10.1016/j.catcom.2007.10.016
  11. G. J. Kim, D. W. Kwon, and S. C. Hong, Effect of Pt particle size and valence state on the performance of Pt/$TiO_2$ catlaysts for CO oxidation at room temeprature, J. Phys. Chem. C, 120, 17996-18004 (2016). https://doi.org/10.1021/acs.jpcc.6b02945
  12. S. P. Cho, A study on the SCR reaction at low temperature and the characteristics of V/titania NOx removal catalyst, PhD Dissertation, Korea University, Korea (2010).
  13. S. S. Kim, K. H. Park, and S. C. Hong, A study on HCHO oxidation characteristics at room temperature using a Pt/$TiO_2$ catalyst, Appl. Catal. A, 398, 96-103 (2011). https://doi.org/10.1016/j.apcata.2011.03.018
  14. B. A. De Angelis, Metal-support and metal-additive effects in catalysis, J. Mol. Catal., 19, 289 (1983). https://doi.org/10.1016/0304-5102(83)80107-2
  15. N. Kamiuchi, M. Haneda, and M. Ozawa, CO oxidation over Pt/Ce-Zr oxide catalysts with low content of platinum and cerium components, Catal. Today, 201, 79-84 (2013). https://doi.org/10.1016/j.cattod.2012.04.039
  16. A. Boubnov, S. Dahl, E. Johnson, A. P. Molina, S. V. Simonsen, F. M. Cano, S. Helveg, L. J. Lemus-Yegres, and J. Grunwaldt, Structure-activity relationships of Pt/$Al_2O_3$ catalysts for CO and NO oxidation at diesel exhaust conditions, Appl. Catal. B, 126, 315-325 (2012). https://doi.org/10.1016/j.apcatb.2012.07.029
  17. N, Yamaguchi, N. Kamiuchi, H. Muroyama, T. Matsui, and K. Eguchi, Effect of reduction treatment on CO oxidation over Pt/$SnO_2$ catalyst, Catal. Today, 164, 169-175 (2011). https://doi.org/10.1016/j.cattod.2010.12.036
  18. P. W. Seo, The Mechanism and characteristics of formaldehyde oxidation reaction over Pt/$TiO_2$ catalysts at room temperature, PhD Dissertation, Korea University, Korea (2010).

Cited by

  1. Pt/TiO2의 HS 산화반응 및 SO2 피독과 재생 방안 연구 vol.30, pp.6, 2019, https://doi.org/10.14478/ace.2019.1093