DOI QR코드

DOI QR Code

Analytical Behavior of Concrete Derailment Containment Provision(DCP) according to Train Impact Loading

열차 충돌하중에 대한 콘크리트 일탈방호시설물(DCP)의 해석적 거동 검토

  • Yi, Na-Hyun (Advanced Railroad Civil Engineering Division, Korea Railroad Research Institute) ;
  • Kim, Ji-Hwan (Advanced Railroad Civil Engineering Division, Korea Railroad Research Institute) ;
  • Kang, Yun-Suk (Advanced Railroad Civil Engineering Division, Korea Railroad Research Institute)
  • 이나현 (한국철도기술연구원 첨단궤도토목본부) ;
  • 김지환 (한국철도기술연구원 첨단궤도토목본부) ;
  • 강윤석 (한국철도기술연구원 첨단궤도토목본부)
  • Received : 2018.08.29
  • Accepted : 2018.11.02
  • Published : 2018.11.30

Abstract

In recent years, numerous train derailment accidents caused by deterioration and high speed technology of railways have increased. Guardrails or barriers of railway bridges are installed to restrain and prevent the derailment of the train body level. On the other hand, it can result in a high casualties and secondary damage. Therefore, a Derailment Containment Provision (DCP) within the track at the wheel/bogie level was developed. DCP is designed for rapid installation because it reduces the impact load on the barrier and inertia force on the steep curve to minimize turnover, fall, and trespass on the other side track of the bridge. In this paper, DCP was analyzed using LS-Dyna with a parameter study as the impact loading location and interface contact condition. The contact conditions were analyzed using the Tiebreak contact simulating breakage of material properties and Perfect bond contact assuming fully attached. As a result, the Tiebreak contact behaved similarly with the actual behavior. In addition, the maximum displacement and flexural failure was generated on the interface and DCP center, respectively. The impact analysis was carried out in advance to confirm the DCP design due to the difficulties of performing the actual impact test, and it could change the DCP anchor design as the analysis results.

전 세계적으로 철도의 노후화 및 고속화 등으로 인한 열차탈선사고가 증가하고 있으며, 그로인한 인적 물적 피해가 증가하고 있는 실정이다. 특히 철도교량의 경우에는 가드레일 또는 방호벽 등을 설치하고 있으나, 이는 탈선열차차량(train body level)이 방호벽과 충돌함으로써 열차의 탈선운동을 억제하여 정지시키는데 목적이 있다. 이와 같은 차량에 의한 탈선방호는 인명피해 위험성 및 2차 피해발생 가능성이 높다. 그러므로 본 연구에서는 주행레일 사이에 일탈방호시설물(DCP, Derailment Containment Provision)을 설치하여, 차륜 또는 차축(wheel/bogie level)에서 탈선열차를 방호할 수 있는 시설물을 개발하였다. 또한, 기존 철도교량의 일탈방호성능을 확보할 수 있도록 DCP의 급속시공이 가능하도록 설계하였으며, 방호벽에 작용하는 충돌하중과 급곡선부에서의 관성력을 감소시킴으로써 일탈된 열차가 교량 밖으로의 전도 낙하방지 및 반대편 선로의 침입하는 것을 최소화 하고자 하였다. 본 논문에서는 LS-Dyna을 이용하여, 설계한 DCP의 열차 충돌위치 및 콘크리트 궤도 접합조건에 따른 거동에 대하여 해석적으로 변수연구를 수행하였다. 특히 접합조건은 접합재료의 물성치에 따라 끊어짐을 모사하는 Tiebreak contact과 완전 부착되었다고 가정하는 Perfect bond contact으로 나눠 해석적으로 검토하였다. DCP의 변위, 앵커 및 콘크리트의 응력, 변형률을 확인한 결과 Tiebreak contact이 실제 충돌하중에 대한 거동을 보다 유사하게 모사하는 것으로 판단하였다. 또한, 충돌위치에 따른 변위는 접합구간에서 가장 큰 변형이 발생하였으며, DCP 블록의 중앙에 충돌이 가해질 경우, 충돌하중이 가해지는 DCP 배면에서 휨 파괴가 발생하였다. 본 연구에서 수행한 충돌해석은 실제 충돌실험의 어려움에 의해 사전적으로 해석을 수행하였으며, 이를 바탕으로 DCP 앵커 설계변경은 필요할 것으로 판단된다.

Keywords

SHGSCZ_2018_v19n11_604_f0001.png 이미지

Fig. 1. Railway derailment protection (a)Barrier wall on protecting trail body level[13] (b)Developed DCP on protecting bogie level

SHGSCZ_2018_v19n11_604_f0002.png 이미지

Fig. 3. Details of DCP on concrete track

SHGSCZ_2018_v19n11_604_f0003.png 이미지

Fig. 2. Modelling outline

SHGSCZ_2018_v19n11_604_f0004.png 이미지

Fig. 4. Analysis modeling DCP on concrete track (a)Total (b)DCP (c)TCL (d)PCL (e)Material model and boundary condition

SHGSCZ_2018_v19n11_604_f0005.png 이미지

Fig. 5. Impact loading-time curve (a)Real applied loading(b)Design loading

SHGSCZ_2018_v19n11_604_f0006.png 이미지

Fig. 7. Analysis parameter and location of impact loading

SHGSCZ_2018_v19n11_604_f0007.png 이미지

Fig. 6. DCP-wheel impact area (a)Side view (b)3D view

SHGSCZ_2018_v19n11_604_f0008.png 이미지

Fig. 8. Dynamic relaxation analysis of anchor

SHGSCZ_2018_v19n11_604_f0009.png 이미지

Fig. 9. DCP displacement-time history (a)Tiebreak contact (b)Perfect bond contact

SHGSCZ_2018_v19n11_604_f0010.png 이미지

Fig. 10. DCP maximum von-Mises stress curve (a)Tiebreak contact (b)Perfect bond contact

SHGSCZ_2018_v19n11_604_f0011.png 이미지

Fig. 11. TCL concrete contour on Anchor(DTC-A2-C) (a)von-Mises Stress (b)Effective plastic strain

SHGSCZ_2018_v19n11_604_f0012.png 이미지

Fig. 12. PCL camplate von-Mieses stress contour(50ms) (a)DTC-A3-C (b)DTD-IC-C

SHGSCZ_2018_v19n11_604_f0013.png 이미지

Fig. 13. Contour of concrete effective plastic strain(25ms) (a)DTC-A2-C (b)DTC-IC-C (c)DTC-A3-C (d)DTC-DC-C(e)DTD-A5-C (f)DTD-IC-C (g)DTC-A2-P (h)DTC-IC-P (i)DTC-A3-P (j)DTC-DC-P (k)DTD-A5-P(l)DTD-IC-P

Table 1. Material properties

SHGSCZ_2018_v19n11_604_t0001.png 이미지

Table 2. Analysis parameter condition

SHGSCZ_2018_v19n11_604_t0002.png 이미지

Table 3. Max. von-Mises stress of PCL camplate and interface

SHGSCZ_2018_v19n11_604_t0003.png 이미지

References

  1. List of rail accidents (2010-present), Available From: https://en.wikipedia.org/wiki/List_of_rail_accidents_(2010%E2%80%93present)
  2. L. Guo, K. Wang, J. Lin, B. Zhang, Z. Chen, X. Song, G. Du, "Study of the Post-derailment Safety Measures on Low-speed Derailment Tests", Vehicle System Dynamics, Vol.54, No.7, pp.943-962, 2016. DOI: https://dx.doi.org/10.1080/00423114.2016.1175646
  3. H. U. Bea, J. H. Moon, J. J. Kim, N. H. Lim, "Concept of Derailment Containment Provisions for Minimizing Expansion of Damage by Train Derailment", Magazine of the Korean Society of Steel Construction, Vol.27, No.2, pp.42-46, April, 2015.
  4. J. H. Lim, Y. J. Choi, K. Y. Lee, Y. I. Jang, N. H. Lim, J. S. Kong, "A Study on Cause Analysis of Derailment Accident Using Failure Tree Analysis", Journal of the Korean Society of Hazard Mitigation, Vol.18, No.2, pp.19-26, 2018. https://doi.org/10.9798/kosham.2018.18.2.19
  5. Railroad Accident & Safety Performance Report, Korea Transportation Safety Authority, 2016.
  6. Status & Statistical Analysis of Railway Accidents in 2016, Korea Transportation Safety Authority, 2016.
  7. H. U. Bae, "Advanced Design Concept of Derailment Containment Provisions using Collision Simulation after Train Derailment", pp.1-205, A Dissertation for the Degree for Doctor of Philosophy, Chungnam National University, 2015.
  8. L. Ling, M. Dhanasekar, D. P. Thambiratnam, Y. Q. Sun, "Lateral Impact Derailment Mechanisms, Simulation and Analysis", International Journal of Impact Engineering, Vol.94, pp.36-49, 2016. DOI: https://dx.doi.org/10.1016/j.ijimpeng.2016.04.001
  9. N. H. Yi, J. H. Kim, Y. S. Kang, H. T. Yoon, "Analysis on the Impact Simulation of Railway Derailment Containment Provision(DCP) according to Material Shape", 2018 Spring Conference of the Korean Society for Railway, KSR2018S049, May, 2018.
  10. Optimization of Derailment Protection System and Establishment of Installation Standard, Final Report, pp.6-236, Korea Rail Network Authority, 2014.
  11. Y. S. Kang, Y. J. Lim, J. J. Kim, H. T. Yoon, N. H. Yi, J. H. Kim, "Conceptual Design and Technical Specifications of Derailment Containment Provisions", The Magazine of The Korean Society of Civil Engineers, Vol.65, No.8, pp.24-31, 2017.
  12. Railway Safety Act, Ministry of Land, Infrastructures and Transport, Railway Safety Policy Division, 2015.
  13. P. D. Moyer, R. W. James, C. H. Bechara, K. L. Chamberlain, Safety of High Speed Guided Ground Transportation Systems, pp.2.2-2.13, US Department of Transportation Federal Railroad Administration Office of Research and Development, Washington DC, 1994.
  14. H. U. Bae, B. J. Park, H. S. Back, N. H. Lim, "Consideration on the Concept of DCP by Foreign Case Study", 2014 Autumn Conference of the Korean Society for Railway, KSR2014A382, pp.1155-1159, Oct. 2014.