Fig. 1. Photo of the cellulose/PET humidifying element
Fig. 2. SEM photo of the cellulose/PET material
Fig. 3. Experimental apparatus
Fig. 4. Flow distribution at the header pipe
Fig. 5. Humidification efficiency vs. water flow rate
Fig. 6. Humidification efficiency (100 mm depth)
Fig. 7. Humidification efficiency (200 mm depth)
Fig. 8. Humidification efficiency (300 mm depth)
Fig. 9. Humidification efficiency (25oC/15oC, 10oC water)
Fig. 10. Humidification efficiency (35oC/21oC)
Fig. 11. Pressure drops of the samples
References
- H. K. Kim, T. I. Ohm, H. K. Yoon, K. Y. Bang, "Numerical Study on the Humidification Efficiency on Humidifying Module Shapes of the Evaporative Humidifier", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol.26, No.1, pp.42-47, 2014. DOI: https://dx.doi.org/10.6110/KJACR.2014.26.1.042
- M. Barzegar, M. Layeghi, G. Ebrahimi, Y. Hamseh, M. Khorasani, "Experimental evaluation of the performances of cellulosic pads made out of Kraft and NSSC corrugated papers as evaporative media", Energy Conversion and Management, Vol.54, No.1, pp.24-29, 2012. DOI: https://dx.doi.org/10.1016/j.enconman.2011.09.016
- J. K. Jain, D. A. Hindoliya, "Experimental performance of new evaporative cooling pad materials", Sustainable Cities and Society, Vol.1, No.4, pp.252-256, 2011. DOI: https://dx.doi.org/10.1016/j.scs.2011.07.005
- C. M. Liao, S. Singh, T. S. Wang, "Characterizing the performance of alternative evaporative cooling pad media in thermal environmental control applications", Journal of Environmental Science and Health, Part A, Vol.33, No.7, pp.1391-1417, 1998. DOI: https://dx.doi.org/10.1080/10934529809376795
- C. M. Liao, K. H. Chiu, "Wind tunnel modeling the system performance of alternative evaporative cooling pads in Taiwan region", Building and Environment, Vol.37, No.2, pp.177-187, 2002. DOI: https://dx.doi.org/10.1016/S0360-1323(00)00098-6
- https://www.munters.com/ko/munters/products/coolers-humidifiers/glasdek/
- N. H. Kim, "A Performance Analysis and Experiments on Plastic Film/Paper Humidifying Elements Consisting of Horizontal Air Channels and Vertical Water Channels", Trans. Korean Soc. Mech. Eng. B., Vol.40, No.1, pp.55-63, 2016. DOI: https://dx.doi.org/10.3795/KSME-B.2016.40.1.055
- A. Franco, D. L. Valera, A. Pena, A. M. Perez, "Aerodynamic analysis and CFD simulation of several cellulose evaporative cooling pads used in Mediterranean greenhouses", Computers and Electronics in Agriculture, Vol.76, No.2, pp.218-230, 2011. DOI: https://dx.doi.org/10.1016/j.compag.2011.01.019
- A. Malli, H. R. Seyf, M. Layeghi, S. Sharifian, H. Behravesh, "Investigating the performance of cellulosic evaporative cooling pads", Energy Conversion and Management, Vol.52, No.7, pp.2598-2603, 2011. DOI: https://dx.doi.org/10.1016/j.enconman.2010.12.015
- ASHRAE Standard 41.1, Standard method for temperature measurement, ASHRAE, 1986.
- ASHRAE Standard 41.2, Standard method for laboratory air-flow measurement, ASHRAE, 1986.
- ASHRAE Standard 41.5, Standard measurement guide, engineering analysis of experimental data, ASHRAE, 1986.