Fig. 1. RNN Architecture [9]
Fig. 2. LSTM Architecture [2]
Fig. 3. Training data acquisition from AWS IoT
Fig. 4. PM10 raw data
Fig. 5. Flow chart of the proposed PM10 prediction LSTM model
Fig. 6. Flow chart of real-time PM10 prediction service
Fig. 7. LSTM loss
Fig. 8. Example of PM10 actual/prediction graphs
Table 1. LSTM_with_peepholes Parameter Settings: sliding_ window=30, window_shift=1
Table 2. Model Evaluation
References
- Amazon Web Service, https://docs.aws.amazon.com/
- Christopher Olah, Understanding LSTM Networks, 2015, Available From: https://www.cse.iitk.ac.in/users/sigml/lec/Slides/LSTM.pdf.
- Korea Environment Corporation(KECO), Available From: http://www.airkorea.or.kr/dictionary_3. (accessed Sept., 12, 2018)
- M. S. Souza, P. Coelho, A. da Silva, A. Pozza, "Using Ensembles of Artificial Neural Networks to Improve PM10 Forecasts", Chemical Engineering Transactions, Vol. 43, pp. 2161-2166, 2015. DOI: https://doi.org/10.3303/CET1543361
- B. Oancea, S. C. Ciucu, "Time series forecasting using neural networks", Proceedings of the CKS 2013 International Conference, pp. 1402-1408, 2014, Available From: https://arxiv.org/ftp/arxiv/papers/1401/1401.1333.pdf.
- Yanchen Liua, Zhe Wangc, Zhongchen Zhang, Jiajie Hong, Borong Lin, "Investigation on the Indoor Environment Quality of health care facilities in China", Building and Environment 141, pp. 273-287, 2018, DOI: https://doi.org/10.1016/j.buildenv.2018.05.054
- Gyu-Sik Kim, Youn-Suk Son, Jai-Hyo Lee, In-Won Kim, Jo-Chun Kim, Joon-Tae Oh, Hiesik Kim, "Air Pollution Monitoring and Control System for Subway Stations Using Environmental Sensors", Hindawi Publishing Corporation Journal of Sensors, Vol. 2016. DOI: https://doi.org/10.1155/2016/1865614
- Jin-Ho Noh, Han-Ho Tack, "The Implementation of the Fine Dust Measuring System based on Internet of Things(IoT)", Journal of the Korea Institute of Information and Communication Engineering, Vol. 21, No. 4, pp. 829-835, 2017, DOI: http://www.dbpia.co.kr/Article/NODE07158660 https://doi.org/10.6109/JKIICE.2017.21.4.829
- Recurrent neural network, Wikipedia, 2018, https://en.wikipedia.org/wiki/Recurrent_neural_network
- Xavier Glorot, Yoshua Bengio, "Understanding the difficulty of training deep feedforward neural networks", Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, PMLR 9, pp. 249-256, 2010, Available From: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.2059&rep=rep1&type=pdf
- Hyperbolic function, Wikipedia, 2018, https://en.wikipedia.org/wiki/Hyperbolic_function
- AdamOptimizer, https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
- Root-mean-square deviation, Wikipedia, 2018, Available From: https://en.wikipedia.org/wiki/Root-mean-square_deviation.
- D. Dunea, S. Iordache, C. Ianache, "Relationship between airborne particulate matter and weather conditions in targoviste urban area during cold months", Roumanian Journal of Chemistry, Vol. 60, pp. 595-601, 2015, Available From: https://www.researchgate.net/publication/284735048
- WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, 2005, Available From: http://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pd
- NAAQS Table, United States Environmental Protection Agency, 2016, Available From: https://www.epa.gov/criteria-air-pollutants/naaqs-table
- D. Vlachogiannis, A. Sfetsos, "Time series forecasting of hourly PM10 values: model intercomparison and the development of localized linear approaches", WIT Transactions on Ecology and the Environment, Vol. 86, pp. 85-94, 2006 DOI: https://doi.org/10.2495/AIR06009
- Hazrul Abdul Hamid, Ahmad Shukri Yahaya, Nor Azam Ramli, Ahmad Zia Ul-Saufie and Mohd Norazam Yasin, "Short Term Prediction of PM10 Concentrations Using Seasonal Time Series Analysis", MATEC Web of Conferences, Vol. 47, 2016. DOI: https://doi.org/10.1051/matecconf/20164705001
- H. Weizhen, L. Zhengqiang, Z. Yuhuan, X. Hua, Z. Ying, L. Kaitao, L. Donghui, W. Peng, M. Yan, "Using support vector regression to predict PM10 and PM2.5", In IOP Conference Series: Earth and Environmental Science, Vol. 17, 2014. DOI: https://doi.org/10.1088/1755-1315/17/1/012268
- J. Chung, C. Gulcehre, K. H. Cho, Y. Bengio, "Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling", Neural Information Processing Systems, 2014, Available From: https://arxiv.org/pdf/1412.3555.pdf
- Incremental learning, Wikipedia, 2018, https://en.wikipedia.org/wiki/Incremental_learning/
- Docker, https://www.docker.com/
- TensorFlow Serving, https://www.tensorflow.org/serving/
- TensorFlow, https://www.tensorflow.org/