DOI QR코드

DOI QR Code

A New Distinct Clade for Iranian Tomato spotted wilt virus Isolates Based on the Polymerase, Nucleocapsid, and Non-structural Genes

  • Abadkhah, Mahsa (Department of Plant Protection, Faculty of Agriculture, University of Zanjan) ;
  • Koolivand, Davoud (Department of Plant Protection, Faculty of Agriculture, University of Zanjan) ;
  • Eini, Omid (Department of Plant Protection, Faculty of Agriculture, University of Zanjan)
  • Received : 2018.04.16
  • Accepted : 2018.07.24
  • Published : 2018.12.01

Abstract

Tomato spotted wilt virus (TSWV; Genus Orthotospovirus: Family Tospoviridae) is one of the most destructive viruses affecting a wide range of horticultural crops on a worldwide basis. In 2015 and 2016, 171 leaf and fruit samples from tomato (Solanum lycopersicum) plants with viral symptoms were collected from the fields in various regions of Iran. ELISA test revealed that the samples were infected by TSWV. The results of RT-PCR showed that the expected DNA fragments of about 819 bp in length were amplified using a pair of universal primer corresponding to the RNA polymerase gene and DNA fragments of ca 777 bp and 724 bp in length were amplified using specific primers that have been designed based on the nucleocapsid (N) and non-structural (NSs) genes, respectively. The amplified fragments were cloned into pTG19-T and sequenced. Sequence comparisons with those available in the GenBank showed that the sequences belong to TSWV. The high nucleotide identity and similarities of new sequences based on the L, N, and NSs genes showed that minor evolutionary differences exist amongst the isolates. The phylogenetic tree grouped all isolates six clades based on N and NSs genes. Phylogenetic analysis showed that the Iranian isolates were composed a new distinct clade based on a part of polymerase, N and NSs genes. To our knowledge, this is the first detailed study on molecular characterization and genetic diversity of TSWV isolates from tomato in Iran that could be known as new clade of TSWV isolates.

Keywords

E1PPBG_2018_v34n6_514_f0001.png 이미지

Fig. 1. Virus symptoms observed on tomato plants. (A) and (E) chlorotic and necrosis spots on leaf and fruit; (B) ring spots on fruit; (C) chlorotic blotches on fruits; (D) deformity and chlorotic spots on fruit; (F) chlorotic spots on fruits.

E1PPBG_2018_v34n6_514_f0002.png 이미지

Fig. 2. Symptoms production in plants inoculated with TSWV. (A) and (B) Solanum lycopersicum, (C) Nicotiana benthamiana, (D) N. tabacum cv samsun, (E) Vigna unguiculcta, (F) Cucurbita pepo.

E1PPBG_2018_v34n6_514_f0003.png 이미지

Fig. 3. Pairwise nucleotide sequence identity matrix of TSWV isolates from Iran and representative isolates from the GenBank, generated using SDT software for nucleocapsid gene (A) and non-structural gene (B).

E1PPBG_2018_v34n6_514_f0004.png 이미지

Fig. 4. Phylogenetic analysis based on the nucleotide sequences of a part of polymerase gene generated using Neighbor-Joining method by Mega 7. Bootstrap values on the branches represent the percentages out of 1000 bootstrap replicates program and Iranian isolates detected in this study have been marked by circle.

E1PPBG_2018_v34n6_514_f0005.png 이미지

Fig. 5. Phylogenetic analysis based on the nucleotide sequences of the nucleocapsid gene generated using Neighbor-Joining method by Mega 7. Bootstrap values on the branches represent the percentages out of 1000 bootstrap replicates program and Iranian isolates detected in this study have been marked by circle.

E1PPBG_2018_v34n6_514_f0006.png 이미지

Fig. 6. Phylogenetic analysis based on the nucleotide sequences of the non-structural gene generated using Neighbor-Joining method by Mega 7. Bootstrap values on the branches represent the percentages out of 1000 bootstrap replicates program and Iranian isolates detected in this study have been marked by circle.

E1PPBG_2018_v34n6_514_f0007.png 이미지

Fig. 7. Phylogenetic analysis based on the nucleotide sequences of nucleocapsid and non-structural genes generated using Neighbor-Joining method by Mega 7. Bootstrap values on the branches represent the percentages out of 1000 bootstrap replicates program and Iranian isolates detected in this study have been marked by circle.

E1PPBG_2018_v34n6_514_f0008.png 이미지

Fig. 8. Trend of polymorphism along the N and NSs genes in the TSWV populations, (A) N gene and (B) NSs gene comprising of 35 and 35 strains/isolates, respectively. Pi stands for nucleotide diversity. The curves were generated by sliding windows with 50 and 25 as the window and step sizes, respectively.

E1PPBG_2018_v34n6_514_f0009.png 이미지

Fig. 9. SLAC site graph to identify positively and negatively codons/sites.

Table 1. Reaction of the indicator plants to TSWV infection after mechanical inoculation

E1PPBG_2018_v34n6_514_t0001.png 이미지

Table 2. Primers used in this research

E1PPBG_2018_v34n6_514_t0002.png 이미지

Table 3. Origins, hosts, and accession numbers of Tomato spotted wilt virus isolates/strains analyzed in this research

E1PPBG_2018_v34n6_514_t0003.png 이미지

Table 4. Summary of genetic diversity and polymorphism analyses of TSWV N gene from different populations

E1PPBG_2018_v34n6_514_t0004.png 이미지

Table 5. Summary of genetic diversity and polymorphism analyses of TSWV NSs gene from different populations

E1PPBG_2018_v34n6_514_t0005.png 이미지

Table 6. Summary of demography test statistics between TSWV N gene populations

E1PPBG_2018_v34n6_514_t0006.png 이미지

Table 7. Summary of demography test statistics between TSWV NSs gene populations

E1PPBG_2018_v34n6_514_t0007.png 이미지

Table 8. Summary of gene flow and genetic differentiation estimates between TSWV Nucleocapsid gene populations

E1PPBG_2018_v34n6_514_t0008.png 이미지

Table 9. Summary of gene flow and genetic differentiation estimates between TSWV NSs gene populations

E1PPBG_2018_v34n6_514_t0009.png 이미지

References

  1. Bananej, K., Ahoonmanesh, A., Shahraeen, N. and Lesemann, D. 1996. Identification of Tomato spotted wilt virus from tomato fields in Varamin area. Iran. J. Plant Pathol. 32:29-30.
  2. Bashir, N. S., Kalhor, M. R. and Zarghani, S. N. 2006. Detection, differentiation and phylogenetic analysis of Cucumber mosaic virus isolates from cucurbits in the northwest region of Iran. Virus Genes 32:277-288. https://doi.org/10.1007/s11262-005-6912-2
  3. Brittlebank, C. 1919. Tomato diseases. J. Agric. Victoria 17:231-235.
  4. Chen, T. C., Huang, C. W., Kuo, Y. W., Liu, F. L., Yuan, C. H., Hsu, H. T. and Yeh, S. D. 2006. Identification of common epitopes on a conserved region of NSs proteins among tospoviruses of Watermelon silver mottle virus serogroup. Phytopathology 96:1296-1304. https://doi.org/10.1094/PHYTO-96-1296
  5. Chen, T. C., Tsai, W. T., Kang, Y. C., Wang, Y. C. and Yeh, S. D. 2016. Using monoclonal antibodies against the common epitopes of NSs proteins for the prompt detection and differentiation of tospoviruses prevalent in Euro-America and Asia regions. Eur. J. Plant Pathol. 144:509-524. https://doi.org/10.1007/s10658-015-0791-8
  6. Chiemsombat, P., Gajanandana, O., Warin, N., Hongprayoon, R., Bhunchoth, A. and Pongsapich, P. 2008. Biological and molecular characterization of tospoviruses in Thailand. Arch. Virol. 153:571-577. https://doi.org/10.1007/s00705-007-0024-3
  7. Chu, F. H., Chao, C. H., Chung, M. H., Chen, C. C. and Yeh, S. D. 2001. Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Phytopathology 91:361-368. https://doi.org/10.1094/PHYTO.2001.91.4.361
  8. Chung, C. T., Niemela, S. L. and Miller, R. H. 1989. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. U.S.A. 86:2172-2175. https://doi.org/10.1073/pnas.86.7.2172
  9. Escriu, F., Fraile, A. and Garcia-Arenal, F. 2003. The evolution of virulence in a plant virus. Evolution 57:755-765. https://doi.org/10.1111/j.0014-3820.2003.tb00287.x
  10. Fu, Y. X. and Li, W. H. 1993. Statistical tests of neutrality of mutations. Genetics 133:693-709.
  11. Gao, F., Lin, W., Shen, J. and Liao, F. 2016. Genetic diversity and molecular evolution of Arabis mosaic virus based on the CP gene sequence. Arch. Virol. 161:1047-1051. https://doi.org/10.1007/s00705-015-2729-z
  12. Ghotbi, T. and Shahraeen, N. 2012. Incidence and distribution of viruses infecting propagated ornamentals in Northern Iran. Int. Res. J. Microbiol. 3:373-381.
  13. Golnaraghi, A. R., Shahraeen, N., Pourrahim, R., Ghorbani, S. and Farzadfar, S. 2001a. First report of a Tospovirus infection of peanuts in Iran. Plant Dis. 85:1286.
  14. Golnaraghi, A. R., Shahraeen, N., Pourrahim, R., Ghorbani, S. and Farzadfar, S. 2001b. First report of Tomato spotted wilt virus on soybean in Iran. Plant Dis. 85:1290.
  15. Golnaraghi, A. R., Shahraeen, N., Pourrahim, R., Farzadfar, S. and Ghasemi, A. 2004. Occurrence and relative incidence of viruses infecting soybeans in Iran. Plant Dis. 88:1069-1074. https://doi.org/10.1094/PDIS.2004.88.10.1069
  16. Golnaraghi, A. R., Pourrahim, R., Farzadfar, S. and Ahoonmanesh, A. 2007. Identification and partial characterization of a Tospovirus causing leaf and stem necrosis on potato. Plant Pathol. J. 6:227-234. https://doi.org/10.3923/ppj.2007.227.234
  17. Hajiabadi, A. M., Asaei, F., Abdollahi Mandoulakani, B. and Rastgou, M. 2012. Natural incidence of tomato viruses in the North of Iran. Phytopathol. Mediterr. 51:390-396.
  18. Hanssen, I. M. and Lapidot, M. 2012. Major tomato viruses in the Mediterranean Basin. Adv. Virus Res. 84:31-66.
  19. Harrison, B. D. 2002. Virus variation in relation to resistancebreaking in plants. Euphytica 124:181-192. https://doi.org/10.1023/A:1015630516425
  20. Hudson, R. R. 2000. A new statistic for detecting genetic differentiation. Genetics 155:2011-2014.
  21. Hudson, R. R., Boos, D. D. and Kaplan, N. L. 1992. A statistical test for detecting geographic subdivision. Mol. Biol. Evol. 9:138-151.
  22. Jones, D. R. 2005. Plant viruses transmitted by thrips. Eur. J. Plant Pathol. 113:119-157. https://doi.org/10.1007/s10658-005-2334-1
  23. Kaye, A. C., Moyer, J. W., Parks, E. J., Carbone, I. and Cubeta, M. A. 2011. Population genetic analysis of Tomato spotted wilt virus on peanut in North Carolina and Virginia. Phytopathology 101:147-153. https://doi.org/10.1094/PHYTO-01-10-0035
  24. Kimura, S. and Sinha, N. 2008. Tomato (Solanum lycopersicum): a model fruit-bearing crop. Cold Spring Harb. Protoc. 2008:pdb.emo105.
  25. King, A. M. Q., Adams, M. J., Carstens, E. B. and Lefkowitz, E. J. 2011. Virus taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. 9th ed. Elsevier, Cambridge, MA, USA, 1327 pp.
  26. Lian, S., Lee, J. S., Cho, W. K., Yu, J., Kim, M. K., Choi, H. S. and Kim, K. H. 2013. Phylogenetic and recombination analysis of Tomato spotted wilt virus. PloS One 8:e63380. https://doi.org/10.1371/journal.pone.0063380
  27. Margaria, P., Miozzi, L., Ciuffo, M., Pappu, H. and Turina, M. 2015. The first complete genome sequences of two distinct European Tomato spotted wilt virus isolates. Arch. Virol. 160:591-595. https://doi.org/10.1007/s00705-014-2256-3
  28. Muhire, B. M., Varsani, A. and Martin, D. P. 2014. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PloS One 9:e108277. https://doi.org/10.1371/journal.pone.0108277
  29. Nischwitz, C., Pappu, H., Mullis, S., Sparks, A., Langston, D., Csinos, A. and Gitaitis, R. 2007. Phylogenetic analysis of Iris yellow spot virus isolates from onion (Allium cepa) in Georgia (USA) and Peru. J. Phytopathol. 155:531-535. https://doi.org/10.1111/j.1439-0434.2007.01272.x
  30. Pang, S. Z., Bock, J. H., Gonsalves, C., Slightom, J. L. and Gonsalves, D. 1994. Resistance of transgenic Nicotiana benthamiana plants to Tomato spotted wilt and Impatiens necrotic spot tospoviruses: evidence of involvement of the N protein and N gene RNA in resistance. Phytopathology 84:243-249. https://doi.org/10.1094/Phyto-84-243
  31. Pappu, H., Du Toit, L., Schwartz, H. and Mohan, S. 2006. Sequence diversity of the nucleoprotein gene of Iris yellow spot virus (genus Tospovirus, family Bunyaviridae) isolates from the western region of the United States. Arch. Virol. 151:1015-1023. https://doi.org/10.1007/s00705-005-0681-z
  32. Pappu, H., Jones, R. and Jain, R. 2009. Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res. 141:219-236. https://doi.org/10.1016/j.virusres.2009.01.009
  33. Parrella, G., Gognalons, P., Gebre-Selassie, K., Vovlas, C. and Marchoux, G. 2003. An update of the host range of Tomato spotted wilt virus. J. Plant Pathol. 85:227-264.
  34. Pond, S. L. K. and Muse, S. V. 2005. HyPhy: hypothesis testing using phylogenies. In: Statistical methods in molecular evolution, pp. 125-181. Springer, New York, USA.
  35. Pourrahim, R., Farzadfar, S., Moini, A., Shahraeen, N. and Ahoonmanesh, A. 2001. First report of Tomato spotted wilt virus on potatoes in Iran. Plant Dis. 85:442.
  36. Rosenberg, N. A. and Nordborg, M. 2002. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat. Rev. Genet. 3:380-390. https://doi.org/10.1038/nrg795
  37. Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E. and Sanchez-Garcia, A. 2017. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 34:3299-3302. https://doi.org/10.1093/molbev/msx248
  38. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  39. Samuel, G., Bald, J. G. and Pittman, H. A. 1930. Investigations on "Spotted Wilt" of Tomatoes. H. J. Green, Government Printer, Melbourne, Australia. 120 pp.
  40. Sherwood, J., German, T., Moyer, J. and Ullman, D. 2003. Tomato spotted wilt. The Plant Health Instructor. doi:10.1094/PHI-1-2003-0613-02.
  41. Sokhandan, B. N., Nematollahi, S. and Torabi, E. 2008. Cucumber mosaic virus subgroup IA frequently occurs in the northwest Iran. Acta Virol. 52:237-242.
  42. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595.
  43. Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Tsuda, S. and Okuno, T. 2002. Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett. 532:75-79. https://doi.org/10.1016/S0014-5793(02)03632-3
  44. Timmerman-Vaughan, G. M., Lister, R., Cooper, R. and Tang, J. 2014. Phylogenetic analysis of New Zealand Tomato spotted wilt virus isolates suggests likely incursion history scenarios and mechanisms for population evolution. Arch. Virol. 159:993-1003. https://doi.org/10.1007/s00705-013-1909-y
  45. Tripathi, D., Raikhy, G. and Pappu, H. R. 2015. Movement and nucleocapsid proteins coded by two tospovirus species interact through multiple binding regions in mixed infections. Virology 478:137-147. https://doi.org/10.1016/j.virol.2015.01.009
  46. Tsompana, M., Abad, J., Purugganan, M. and Moyer, J. 2005. The molecular population genetics of the Tomato spotted wilt virus (TSWV) genome. Mol. Ecol. 14:53-66.
  47. Valizadeh, M., Valizadeh, J. and Jafari, M. 2011. Identification, distribution and incidence of important tomato and cucurbits viruses in the southeast of Iran. Am. J. Plant Physiol. 6:242-251. https://doi.org/10.3923/ajpp.2011.242.251
  48. Whitfield, A. E., Ullman, D. E. and German, T. L. 2005. Tospovirus-thrips interactions. Annu. Rev. Phytopathol. 43:459-489. https://doi.org/10.1146/annurev.phyto.43.040204.140017
  49. Zhang, Z., Wang, D., Yu, C., Wang, Z., Dong, J., Shi, K. and Yuan, X. 2016. Identification of three new isolates of Tomato spotted wilt virus from different hosts in China: molecular diversity, phylogenetic and recombination analyses. Virol. J. 13:8. https://doi.org/10.1186/s12985-015-0457-3
  50. Zheng, Y. X., Chen, C. C., Yang, C. J., Yeh, S. D. and Jan, F. J. 2008. Identification and characterization of a tospovirus causing chlorotic ringspots on Phalaenopsis orchids. Eur. J. Plant Pathol. 120:199-209. https://doi.org/10.1007/s10658-007-9208-7
  51. Zindovic, J., Ciuffo, M. and Turina, M. 2014. Molecular characterization of Tomato spotted wilt virus in Montenegro. J. Plant Pathol. 96:201-205.