DOI QR코드

DOI QR Code

Seismic response characteristics of the hypothetical subsea tunnel in the fault zone with various material properties

다양한 물성의 단층대를 통과하는 가상해저터널의 지진 시 응답 특성

  • Received : 2018.09.19
  • Accepted : 2018.10.25
  • Published : 2018.11.30

Abstract

A subsea tunnel, being a super-sized underground structure must ensure safety at the time of earthquake, as well as at ordinary times. At the time of earthquake, in particular, of a subsea tunnel, a variety of response behaviors are induced owing to relative rigidity to the surrounding ground, or difference of displacement, so that the behavior characteristics can be hardly anticipated. The investigation aims to understand the behavior characteristics switched by earthquake of an imaginary subsea tunnel which passes through a fault zone having different physical properties from those of the surrounding ground. In order to achieve the aim, dynamic response behaviors of a subsea tunnel which passes through a fault zone were observed by means of indoor experiments. For the sake of improved earthquake resistance, a shape of subsea tunnel to which flexible segments have been applied was considered. Afterward, it is believed that a D/B can be established through 3-dimensional earthquake resistance interpretation of various grounds, on the basis of verified results from the experiments and interpretations under various conditions. The present investigation performed 1 g shaking table test in order to verify the result of 3-dimensional earthquake resistance interpretation. A model considering the similitude (1:100) of a scale-down model test was manufactured, and tests for three (3) Cases were carried out. Incident seismic wave was introduced by artificial seismic wave having both long-period and short-period earthquake properties in the horizontal direction which is rectangular to the processing direction of the tunnel, so that a fault zone was modeled. For numerical analysis, elastic modulus of the fault zone was assumed 1/5 value of the modulus of individual grounds surround the tunnel, in order to simulate a fault zone. Resultantly, reduced acceleration was confirmed with increase of physical properties of the fault zone, and the result from the shaking table test showed the same tendency as the result from 3-dimensional interpretation.

초대형 지하구조물인 해저터널은 평상시는 물론 지진 시에도 안정성을 확보하여야 한다. 특히 해저터널의 지진 시 주위 지반과의 상대적인 강성, 변위 차이에 의하여 다양한 지진 응답거동이 유발되므로 그 거동 특성을 예측하기가 쉽지 않다. 본 연구의 목적은 주위 지반과 물성이 다른 단층대를 통과하는 가상해저터널의 지진 시 동적 거동특성 파악이며, 이를 위하여 3차원 내진해석의 결과를 토대로 실내시험을 통해 단층대를 통과하는 해저터널의 동적 응답거동을 파악하였다. 이 때, 해저터널은 내진성능 향상을 위하여 가동세그먼트(Flexible Segment)가 적용된 형태를 고려하였다. 추후, 다양한 조건에서의 해석 및 시험을 통하여 검증된 결과를 획득하고 이를 바탕으로 다양한 지반의 3차원 내진해석을 통한 D/B 구축이 가능할 것으로 판단된다. 본 연구에서는 3차원 내진해석의 결과를 검증하기 위하여 1 g 진동대 시험(1 g Shaking table test)을 수행하였다. 축소 모형시험의 상사율(1:100)을 고려하여 아크릴로 모형을 제작하고 3가지 Case의 시험을 수행하였다. 입력 지진파는 장, 단주기 지진특성을 모두 가진 인공지진파를 터널 진행방향과 직교하는 수평방향으로 가진 하였으며 단층대를 모델링하였다. 수치해석시 단층대를 모사하기 위하여 단층대의 탄성계수는 터널 주위 각 해당지반의 탄성계수의 1/5에 해당하는 값으로 가정하여 적용하였다. 그 결과 단층대의 물성이 증가함에 따라 가속도 감소를 확인할 수 있었으며 진동대 시험결과도 3차원해석결과와 동일한 경향을 나타냄을 확인하였다.

Keywords

TNTNB3_2018_v20n6_1061_f0001.png 이미지

Fig. 1. 3D modeling and monitoring point

TNTNB3_2018_v20n6_1061_f0002.png 이미지

Fig. 2. 3D modeling of fault zone

TNTNB3_2018_v20n6_1061_f0003.png 이미지

Fig. 3. Input seismic wave

TNTNB3_2018_v20n6_1061_f0004.png 이미지

Fig. 4. Acceleration results

TNTNB3_2018_v20n6_1061_f0005.png 이미지

Fig. 5. Displacement result

TNTNB3_2018_v20n6_1061_f0006.png 이미지

Fig. 6. System of shaking table test and sensors

TNTNB3_2018_v20n6_1061_f0007.png 이미지

Fig. 7. Measurement location

TNTNB3_2018_v20n6_1061_f0008.png 이미지

Fig. 8. 1 g shaking table test procedures

TNTNB3_2018_v20n6_1061_f0009.png 이미지

Fig. 9. 1 g shaking table test result

Table 1. Numerical analysis conditions

TNTNB3_2018_v20n6_1061_t0001.png 이미지

Table. 2 Numerical analysis condition for young’s modulus

TNTNB3_2018_v20n6_1061_t0002.png 이미지

Table 3. Ground properties

TNTNB3_2018_v20n6_1061_t0003.png 이미지

Table 4. Cases of shaking table test

TNTNB3_2018_v20n6_1061_t0004.png 이미지

Table 5. Comparison of 1 g shaking table test and 3D numerical analysis results

TNTNB3_2018_v20n6_1061_t0005.png 이미지

References

  1. Baziar, M.H., Moghadam, M.R., Kim, D.S., Choo, Y.W. (2014), "Effect of underground tunnel on the ground surface acceleration", Tunnelling and Underground Space Technology, Vol. 44, pp. 10-22. https://doi.org/10.1016/j.tust.2014.07.004
  2. Chen, Z.Y., Shen, H. (2014), "Dynamic centrifuge tests on isolation mechanism of tunnels subjected to seismic shaking", Tunnelling and Underground Space Technology, Vol. 42, pp. 67-77. https://doi.org/10.1016/j.tust.2014.02.005
  3. Cilingir, U., Madabhush, S.P.G. (2011b), "Effect of depth on seismic response of circular tunnels", Canadian Geotechnical Journal, Vol. 48, No. 1, pp. 117-127. https://doi.org/10.1139/T10-047
  4. Cilingir, U., Madabhushi, S.P.G. (2011a), "A model study on the effects of input motion on the seismic behaviour of tunnels", Soil Dynamics and Earthquake Engineering, Vol. 31, No. 3, pp. 452-462. https://doi.org/10.1016/j.soildyn.2010.10.004
  5. Iai, S. (1989), "Similitude for shaking-table tests on soil-structure-fluid model in 1g gravitational field", Soils Found. Vol. 29, No. 1, pp. 105-118. https://doi.org/10.3208/sandf1972.29.105
  6. Jang, D.I., Kim, J.I., Kwak, C.W., Park I.J. (2017), "Study on flexible segment efficiency for seismic performance improvement of subsea tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 3, pp.503-515. https://doi.org/10.9711/KTAJ.2017.19.3.503
  7. Kim, H., Kang, S.O., Yoo, K.S., Kim, S.H. (2017), "Design considerations and field applications on inflatable structure system to protect rapidly flooding damages in tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 2, pp. 161-177. https://doi.org/10.9711/KTAJ.2017.19.2.161
  8. Kwak, C.W., Jang, D.I., Park, I.J., Park, S.Y. (2016), "Seismic response analysis of virtual Honam-Jeju subsea tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 3, pp. 319-329. https://doi.org/10.9711/KTAJ.2016.18.3.319
  9. Kwak, C.W., Park, I.J. (2015), "Seismic behaviors of twin tunnel with flexible segment", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 6, pp. 695-702. https://doi.org/10.9711/KTAJ.2015.17.6.695
  10. Yang, W., Hussein, M.F.M., Marshall, A.M. (2013), "Centrifuge and numerical modelling of ground-borne vibration from an underground tunnel", Soil Dynamics and Earthquake Engineering, Vol. 51, pp. 23-34. https://doi.org/10.1016/j.soildyn.2013.04.004