DOI QR코드

DOI QR Code

Numerical analyses using CFD on the pressure losses of the grout flow with variation of joint roughness and grout features

전산유동역학을 이용한 절리 거칠기 및 주입재 특성에 따른 그라우트 주입 시 압력 손실 해석

  • Sagong, Myung (Advanced Railroad Civil Engineering Division, Korea Railroad Research Institute) ;
  • Ryu, Sung-ha (Facility Team, Poongsan Corporation)
  • 사공명 (한국철도기술연구원 첨단궤도토목연구본부) ;
  • 류성하 (풍산 시설팀)
  • Received : 2018.08.23
  • Accepted : 2018.10.17
  • Published : 2018.11.30

Abstract

Grouting for the rock joint is to strengthen the rock strata by infiltrating cement grout materials into the rock joints. Grouting is one of a field of study which is difficult to develop deterministic and quantitative design approach because of multiphase behaviors of grout materials and 3 dimensional features of rock joints. Therefore, GIN (Grouting Intensity Number) can be a good index with appropriate monitoring of pressure and volume of grout. In this paper, we investigate the effects of joint roughness (JRC) and rheology of cement material during the infiltration of cement grout material into rock joint through CFD (computational fluid dynamics) analyses. With rough joint surface and increase of WC ratio, the frictional resistance during the grouting increases. The results have been summarized with polynomial correlations.

암반 내 그라우팅은 불연속면 내부에 시멘트 그라우트재를 주입하여 주변지반을 강화하는 목적으로 사용된다. 현장에서 다상의 그라우트재의 주입 시 거동특성 및 주입경로인 3차원 절리면의 형태가 사전파악되지 않으므로 정량적인 설계가 어려운 분야중 하나이다. 따라서 현장에서의 그라우트 주입 거동특성을 나타내는 GIN (Grouting Intensity Number) 지표를 이용하여 주입 모니터링을 통해 적절한 시공관리를 수행하는 것이 최적이 방안이다. 본 논문에서는 그라우팅 주입 시 절리면의 거칠기 등급과 물시멘트(W/C)비에 따라 발생하는 압력의 손실을 전산유동해석을 수행하여 조사하였다. 절리면이 거칠수록 그리고 물시멘트비가 높을수록 주입 시 마찰저항은 크게 발생하였으며 해당 결과를 각 조건별 상관식으로 정리하였다.

Keywords

TNTNB3_2018_v20n6_989_f0001.png 이미지

Fig. 1. GIN envelope, target and zero flow path for the controlled grouting process

TNTNB3_2018_v20n6_989_f0002.png 이미지

Fig. 2. Schematic of grout injection

TNTNB3_2018_v20n6_989_f0003.png 이미지

Fig. 3 Topographic profile of a joint along x-axis

TNTNB3_2018_v20n6_989_f0004.png 이미지

Fig. 4. A correlation between standard deviation and Z2

TNTNB3_2018_v20n6_989_f0005.png 이미지

Fig. 5. Grid generation process (aperture = 0.3 mm)

TNTNB3_2018_v20n6_989_f0006.png 이미지

Fig. 6. Joint surface profile according to the JRC (aperture = 0.3 mm)

TNTNB3_2018_v20n6_989_f0007.png 이미지

Fig. 7. Herschel-Bulkley, Power-Law model of the shear stress and shear rate of change

TNTNB3_2018_v20n6_989_f0008.png 이미지

Fig. 8. The velocity profile of joint surface (W/C = 1, aperture = 0.3)

TNTNB3_2018_v20n6_989_f0009.png 이미지

Fig. 9. Pressure by position along the joint (kPa)

TNTNB3_2018_v20n6_989_f0010.png 이미지

Fig. 10. Variation of required injection pressure affected by W/C, aperture and JRC (kPa)

Table 1 A correlation between Standard deviation, Z2 and JRC

TNTNB3_2018_v20n6_989_t0001.png 이미지

Table 2. Grout material properties

TNTNB3_2018_v20n6_989_t0002.png 이미지

Table 3. Boundary condition

TNTNB3_2018_v20n6_989_t0003.png 이미지

Table 4. Required pressures for a constant grout injection of 3 l/min with different joint apertures and roughness (kPa)

TNTNB3_2018_v20n6_989_t0004.png 이미지

Table 4. Correlations of Kp with aperture and JRC

TNTNB3_2018_v20n6_989_t0005.png 이미지

Table 4. Correlations of Kp with aperture and JRC (continue)

TNTNB3_2018_v20n6_989_t0006.png 이미지

References

  1. Cravero, M., Ferrero, A.M., Iabichino, G. (2001), "Evaluation of joint roughness and dilatancy of schistosity joints", Rock mechanics - a challenge for society Proceedings of Eurock 2001, Espoo Finland, 4-7 June 2001, pp. 217-223.
  2. Han, S., Yea, G., Kim, H. (2014), "Improvement effects of cement grouting using vibration method through a field test", Journal of the Korea Geo-Environmental Society, Vol. 15, No. 5, pp. 23-29.
  3. Jung, H.S., Han, J.K., Moon, J.S., Yoon, H.H. (2017), "Grouting performance for the reinforcement of operating railway roadbed", Journal of the Korean Geo-Environmental Society, Vol. 18, No. 12, pp. 13-23. https://doi.org/10.14481/jkges.2017.18.1.13
  4. Kim, D.Y., Lee, H.S., Lee, S.J., Sim, B.K., Jung, J.H. (2014), "Case study on cut-off grouting for subsea tunnel construction using automated multi grouting system and grouting design software", Proceedings of the World Tunnel Congress 2014 - Tunnels for a better life Foz Do Iguacu, Brazil.
  5. Park, I., Kim, D. (2017), "A study of field mixing ratio using bio-grouting injection material", Journal of the Korean Geosynthetics Society, Vol. 16, No. 2, pp. 47-54. https://doi.org/10.12814/jkgss.2017.16.2.047
  6. Park, S.Y., Shim, H.G., Kang, H.J., Lim, O.B., Sami, G.F., Kim, Y.S. (2017), "A study on hybrid grout material for reservoir embankment reinforcement", Journal of the Korean Geosynthetics Society, Vol. 16, No. 3, pp. 21-30. https://doi.org/10.12814/jkgss.2017.16.3.021
  7. Rosquoet, F., Alexis, A., Khelidj, A., Phelipot, A. (2003), "Experimental study of cement grout: Rheological behavior and sedimentation", Cement and Concrete Research, Vol. 33, No. 5, pp.713-722. https://doi.org/10.1016/S0008-8846(02)01036-0
  8. Turcote, L., Savard, B., Lombardi, G., Jobin, H. (1994), "The use of stable grout and G.I.N. technique in grouting for dam rehabilitation", Annual Meeting Canadian Dam Safety Conference CSDA and CANCOLD Winnipeg, Manitoba, pp. 137-161.
  9. Tse, R., Cruden, D. (1979), "Estimating joint roughness coefficient", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 16, No. 5, pp. 303-307. https://doi.org/10.1016/0148-9062(79)90241-9
  10. Yang, Z.Y., Lo, S.C., Di, C.C. (2001), "Reassessing the joint roughness coefficient (JRC) estimation using $Z_2$", Rock Mechanics and Rock Engineering, Vol. 34, No. 3, pp. 243-251. https://doi.org/10.1007/s006030170012