References
- Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin, A. V. et al. (2013) Signatures of mutational processes in human cancer. Nature 500, 415-421. https://doi.org/10.1038/nature12477
- Alistar, A., Morris, B. B., Desnoyer, R., Klepin, H. D., Hosseinzadeh, K., Clark, C. et al. (2017) Safety and tolerability of the first-in-class agent CPI-613 in combination with modified FOLFIRINOX in patients with metastatic pancreatic cancer: a single-centre, openlabel, dose-escalation, phase 1 trial. Lancet Oncol. 18, 770-778. https://doi.org/10.1016/S1470-2045(17)30314-5
- Altman, B. J., Stine, Z. E. and Dang, C. V. (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 619-634.
- Ardawi, M. S. and Newsholme, E. A. (1983) Glutamine metabolism in lymphocytes of the rat. Biochem. J. 212, 835-842. https://doi.org/10.1042/bj2120835
- Chan, M. C., Holt-Martyn, J. P., Schofield, C. J. and Ratcliffe, P. J. (2016) Pharmacological targeting of the HIF hydroxylases--a new field in medicine development. Mol. Aspects Med. 47-48, 54-75. https://doi.org/10.1016/j.mam.2016.01.001
- Cori, C. A. and Cori, G. T. (1925) The carbohydrate metabolism of tumours. J. Biol. Chem. 65, 397-405.
- Davidson, S. M., Papagiannakopoulos, T., Olenchock, B. A., Heyman, J. E., Keibler, M. A., Luengo, A. et al. (2016) Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 23, 517-528. https://doi.org/10.1016/j.cmet.2016.01.007
- DeBerardinis, R. J. and Chandel, N. S. (2016) Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200. https://doi.org/10.1126/sciadv.1600200
- Gross, M. I., Demo, S. D., Dennison, J. B., Chen, L., Chernov-Rogan, T., Goyal, B. et al. (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13, 890-901.
- Hensley, C. T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E., Kim, J. et al. (2016) Metabolic heterogeneity in human lung tumors. Cell 164, 681-694. https://doi.org/10.1016/j.cell.2015.12.034
- Hosios, A. M., Hecht, V. C., Danai, L. V., Johnson, M. O., Rathmell, J. C., Steinhauser, M. L., Manalis, S. R. and Vander Heiden, M. G. (2016) Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell 36, 540-549. https://doi.org/10.1016/j.devcel.2016.02.012
- Huang, D., Li, T., Wang, L., Zhang, L., Yan, R., Li, K., Xing, S., Wu, G., Hu, L., Jia, W., Lin, S. C., Dang, C. V., Song, L., Gao, P. and Zhang, H. (2016) Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress. Cell Res. 26, 1112-1130. https://doi.org/10.1038/cr.2016.109
- Koppenol, W. H., Bounds, P. L. and Dang, C. V. (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325-337.
- Li, F., Wang, Y., Zeller, K. I., Potter, J. J., Wonsey, D. R., O'Donnell, K. A., Kim, J. W., Yustein, J. T., Lee, L. A. and Dang, C. V. (2005) Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol. 25, 6225-6234. https://doi.org/10.1128/MCB.25.14.6225-6234.2005
- Missiaen, R., Morales-Rodriguez, F., Eelen, G. and Carmeliet, P. (2017) Targeting endothelial metabolism for anti-angiogenesis therapy: A pharmacological perspective. Vascul. Pharmacol. 90, 8-18. https://doi.org/10.1016/j.vph.2017.01.001
- Murray, P. J., Rathmell, J. and Pearce, E. (2015) SnapShot: immunometabolism. Cell Metab. 22, 190-190.e1. https://doi.org/10.1016/j.cmet.2015.06.014
- Nakazawa, M. S., Keith, B. and Simon, M. C. (2016) Oxygen availability and metabolic adaptations. Nat. Rev. Cancer 16, 663-673. https://doi.org/10.1038/nrc.2016.84
- O'Neill, L. A., Kishton, R. J. and Rathmell, J. (2016) A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553-565. https://doi.org/10.1038/nri.2016.70
- Pasteur, L. (1879) The Physiological Theory of Fermentation. Kessinger Publishing, LLC.
- Pavlova, N. N. and Thompson, C. B. (2016) The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27-47. https://doi.org/10.1016/j.cmet.2015.12.006
- Sellers, K., Fox, M. P., Bousamra, M., 2nd, Slone, S. P., Higashi, R. M., Miller, D. M., Wang, Y., Yan, J., Yuneva, M. O., Deshpande, R., Lane, A. N. and Fan, T. W. (2015) Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687-698. https://doi.org/10.1172/JCI72873
- Semenza, G. L. (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148, 399-408. https://doi.org/10.1016/j.cell.2012.01.021
- Shen, C. and Kaelin, W. G., Jr. (2013) The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 23, 18-25. https://doi.org/10.1016/j.semcancer.2012.06.001
- Sousa, C. M., Biancur, D. E., Wang, X., Halbrook, C. J., Sherman, M. H., Zhang, L., Kremer, D., Hwang, R. F., Witkiewicz, A. K., Ying, H., Asara, J. M., Evans, R. M., Cantley, L. C., Lyssiotis, C. A. and Kimmelman, A. C. (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479-483. https://doi.org/10.1038/nature19084
- Wang, R., Dillon, C. P., Shi, L. Z., Milasta, S., Carter, R., Finkelstein, D., McCormick, L. L., Fitzgerald, P., Chi, H., Munger, J. and Green, D. R. (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871-882. https://doi.org/10.1016/j.immuni.2011.09.021
- Warburg, O. (1956) On the origin of cancer cells. Science 123, 309-314. https://doi.org/10.1126/science.123.3191.309
- Warburg, O., Wind, F. and Negelein, E. (1927) The metabolism of tumors in the body. J. Gen. Physiol. 8, 519-530. https://doi.org/10.1085/jgp.8.6.519
- Wolf, E., Gebhardt, A., Kawauchi, D., Walz, S., von Eyss, B., Wagner, N., Renninger, C., Krohne, G., Asan, E., Roussel, M. F. Eilers, M. (2013) Miz1 is required to maintain autophagic flux. Nat. Commun. 4, 2535. https://doi.org/10.1038/ncomms3535
- Wong, B. W., Marsch, E., Treps, L., Baes, M. and Carmeliet, P. (2017) Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO J. 36, 2187-2203. https://doi.org/10.15252/embj.201696150
- Yuneva, M. O., Fan, T. W., Allen, T. D., Higashi, R. M., Ferraris, D. V., Tsukamoto, T., Mates, J. M., Alonso, F. J., Wang, C., Seo, Y., Chen, X. and Bishop, J. M. (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157-170. https://doi.org/10.1016/j.cmet.2011.12.015
-
Zhang, D., Wang, Y., Shi, Z., Liu, J., Sun, P., Hou, X., Zhang, J., Zhao, S., Zhou, B. P. and Mi, J. (2015) Metabolic reprogramming of cancer- associated fibroblasts by
$IDH3{\alpha}$ downregulation. Cell Rep. 10, 1335-1348. - Zhang, T., Somasundaram, R., Berencsi, K., Caputo, L., Rani, P., Guerry, D., Furth, E., Rollins, B. J., Putt, M., Gimotty, P., Swoboda, R., Herlyn, M. and Herlyn, D. (2005) CXC chemokine ligand 12 (stromal cell-derived factor 1 alpha) and CXCR4-dependent migration of CTLs toward melanoma cells in organotypic culture. J. Immunol. 174, 5856-5863. https://doi.org/10.4049/jimmunol.174.9.5856
Cited by
- Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses vol.8, pp.2234-943X, 2018, https://doi.org/10.3389/fonc.2018.00081
- Cancer Metabolism: a Hope for Curing Cancer vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.300
- Cancer; an induced disease of twentieth century! Induction of tolerance, increased entropy and ‘Dark Energy’: loss of biorhythms (Anabolism v. Catabolism) vol.7, pp.1, 2018, https://doi.org/10.1186/s40169-018-0193-6
- Lung Cancer Heterogeneity in Modulation of Th17/IL17A Responses vol.9, pp.None, 2018, https://doi.org/10.3389/fonc.2019.01384
- Macrophage Origin, Metabolic Reprogramming and IL-1β Signaling: Promises and Pitfalls in Lung Cancer vol.11, pp.3, 2019, https://doi.org/10.3390/cancers11030298
- Shedding New Light on Cancer Metabolism: A Metabolic Tightrope Between Life and Death vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.00409
- Immunometabolism: new insights and lessons from antigen-directed cellular immune responses vol.42, pp.3, 2018, https://doi.org/10.1007/s00281-020-00798-w
- From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy vol.144, pp.None, 2020, https://doi.org/10.1016/j.mehy.2020.110216
- To betray or to fight? The dual identity of the mitochondria in cancer vol.17, pp.6, 2018, https://doi.org/10.2217/fon-2020-0362
- RAB38 Facilitates Energy Metabolism and Counteracts Cell Death in Glioblastoma Cells vol.10, pp.7, 2018, https://doi.org/10.3390/cells10071643
- The MYC oncogene - the grand orchestrator of cancer growth and immune evasion vol.19, pp.1, 2018, https://doi.org/10.1038/s41571-021-00549-2