DOI QR코드

DOI QR Code

Convergence of Cancer Metabolism and Immunity: an Overview

  • Van Dang, Chi (Ludwig Institute for Cancer Research) ;
  • Kim, Jung-whan (Department of Biological Sciences, The University of Texas at Dallas)
  • Received : 2017.09.27
  • Accepted : 2017.11.17
  • Published : 2018.01.01

Abstract

Cancer metabolism as a field of research was founded almost 100 years ago by Otto Warburg, who described the propensity for cancers to convert glucose to lactate despite the presence of oxygen, which in yeast diminishes glycolytic metabolism known as the Pasteur effect. In the past 20 years, the resurgence of interest in cancer metabolism provided significant insights into processes involved in maintenance metabolism of non-proliferating cells and proliferative metabolism, which is regulated by proto-oncogenes and tumor suppressors in normal proliferating cells. In cancer cells, depending on the driving oncogenic event, metabolism is re-wired for nutrient import, redox homeostasis, protein quality control, and biosynthesis to support cell growth and division. In general, resting cells rely on oxidative metabolism, while proliferating cells rewire metabolism toward glycolysis, which favors many biosynthetic pathways for proliferation. Oncogenes such as MYC, BRAF, KRAS, and PI3K have been documented to rewire metabolism in favor of proliferation. These cell intrinsic mechanisms, however, are insufficient to drive tumorigenesis because immune surveillance continuously seeks to destroy neo-antigenic tumor cells. In this regard, evasion of cancer cells from immunity involves checkpoints that blunt cytotoxic T cells, which are also attenuated by the metabolic tumor microenvironment, which is rich in immuno-modulating metabolites such as lactate, 2-hydroxyglutarate, kynurenine, and the proton (low pH). As such, a full understanding of tumor metabolism requires an appreciation of the convergence of cancer cell intrinsic metabolism and that of the tumor microenvironment including stromal and immune cells.

Keywords

References

  1. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin, A. V. et al. (2013) Signatures of mutational processes in human cancer. Nature 500, 415-421. https://doi.org/10.1038/nature12477
  2. Alistar, A., Morris, B. B., Desnoyer, R., Klepin, H. D., Hosseinzadeh, K., Clark, C. et al. (2017) Safety and tolerability of the first-in-class agent CPI-613 in combination with modified FOLFIRINOX in patients with metastatic pancreatic cancer: a single-centre, openlabel, dose-escalation, phase 1 trial. Lancet Oncol. 18, 770-778. https://doi.org/10.1016/S1470-2045(17)30314-5
  3. Altman, B. J., Stine, Z. E. and Dang, C. V. (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 619-634.
  4. Ardawi, M. S. and Newsholme, E. A. (1983) Glutamine metabolism in lymphocytes of the rat. Biochem. J. 212, 835-842. https://doi.org/10.1042/bj2120835
  5. Chan, M. C., Holt-Martyn, J. P., Schofield, C. J. and Ratcliffe, P. J. (2016) Pharmacological targeting of the HIF hydroxylases--a new field in medicine development. Mol. Aspects Med. 47-48, 54-75. https://doi.org/10.1016/j.mam.2016.01.001
  6. Cori, C. A. and Cori, G. T. (1925) The carbohydrate metabolism of tumours. J. Biol. Chem. 65, 397-405.
  7. Davidson, S. M., Papagiannakopoulos, T., Olenchock, B. A., Heyman, J. E., Keibler, M. A., Luengo, A. et al. (2016) Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 23, 517-528. https://doi.org/10.1016/j.cmet.2016.01.007
  8. DeBerardinis, R. J. and Chandel, N. S. (2016) Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200. https://doi.org/10.1126/sciadv.1600200
  9. Gross, M. I., Demo, S. D., Dennison, J. B., Chen, L., Chernov-Rogan, T., Goyal, B. et al. (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13, 890-901.
  10. Hensley, C. T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E., Kim, J. et al. (2016) Metabolic heterogeneity in human lung tumors. Cell 164, 681-694. https://doi.org/10.1016/j.cell.2015.12.034
  11. Hosios, A. M., Hecht, V. C., Danai, L. V., Johnson, M. O., Rathmell, J. C., Steinhauser, M. L., Manalis, S. R. and Vander Heiden, M. G. (2016) Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell 36, 540-549. https://doi.org/10.1016/j.devcel.2016.02.012
  12. Huang, D., Li, T., Wang, L., Zhang, L., Yan, R., Li, K., Xing, S., Wu, G., Hu, L., Jia, W., Lin, S. C., Dang, C. V., Song, L., Gao, P. and Zhang, H. (2016) Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress. Cell Res. 26, 1112-1130. https://doi.org/10.1038/cr.2016.109
  13. Koppenol, W. H., Bounds, P. L. and Dang, C. V. (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325-337.
  14. Li, F., Wang, Y., Zeller, K. I., Potter, J. J., Wonsey, D. R., O'Donnell, K. A., Kim, J. W., Yustein, J. T., Lee, L. A. and Dang, C. V. (2005) Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol. 25, 6225-6234. https://doi.org/10.1128/MCB.25.14.6225-6234.2005
  15. Missiaen, R., Morales-Rodriguez, F., Eelen, G. and Carmeliet, P. (2017) Targeting endothelial metabolism for anti-angiogenesis therapy: A pharmacological perspective. Vascul. Pharmacol. 90, 8-18. https://doi.org/10.1016/j.vph.2017.01.001
  16. Murray, P. J., Rathmell, J. and Pearce, E. (2015) SnapShot: immunometabolism. Cell Metab. 22, 190-190.e1. https://doi.org/10.1016/j.cmet.2015.06.014
  17. Nakazawa, M. S., Keith, B. and Simon, M. C. (2016) Oxygen availability and metabolic adaptations. Nat. Rev. Cancer 16, 663-673. https://doi.org/10.1038/nrc.2016.84
  18. O'Neill, L. A., Kishton, R. J. and Rathmell, J. (2016) A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553-565. https://doi.org/10.1038/nri.2016.70
  19. Pasteur, L. (1879) The Physiological Theory of Fermentation. Kessinger Publishing, LLC.
  20. Pavlova, N. N. and Thompson, C. B. (2016) The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27-47. https://doi.org/10.1016/j.cmet.2015.12.006
  21. Sellers, K., Fox, M. P., Bousamra, M., 2nd, Slone, S. P., Higashi, R. M., Miller, D. M., Wang, Y., Yan, J., Yuneva, M. O., Deshpande, R., Lane, A. N. and Fan, T. W. (2015) Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687-698. https://doi.org/10.1172/JCI72873
  22. Semenza, G. L. (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148, 399-408. https://doi.org/10.1016/j.cell.2012.01.021
  23. Shen, C. and Kaelin, W. G., Jr. (2013) The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 23, 18-25. https://doi.org/10.1016/j.semcancer.2012.06.001
  24. Sousa, C. M., Biancur, D. E., Wang, X., Halbrook, C. J., Sherman, M. H., Zhang, L., Kremer, D., Hwang, R. F., Witkiewicz, A. K., Ying, H., Asara, J. M., Evans, R. M., Cantley, L. C., Lyssiotis, C. A. and Kimmelman, A. C. (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479-483. https://doi.org/10.1038/nature19084
  25. Wang, R., Dillon, C. P., Shi, L. Z., Milasta, S., Carter, R., Finkelstein, D., McCormick, L. L., Fitzgerald, P., Chi, H., Munger, J. and Green, D. R. (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871-882. https://doi.org/10.1016/j.immuni.2011.09.021
  26. Warburg, O. (1956) On the origin of cancer cells. Science 123, 309-314. https://doi.org/10.1126/science.123.3191.309
  27. Warburg, O., Wind, F. and Negelein, E. (1927) The metabolism of tumors in the body. J. Gen. Physiol. 8, 519-530. https://doi.org/10.1085/jgp.8.6.519
  28. Wolf, E., Gebhardt, A., Kawauchi, D., Walz, S., von Eyss, B., Wagner, N., Renninger, C., Krohne, G., Asan, E., Roussel, M. F. Eilers, M. (2013) Miz1 is required to maintain autophagic flux. Nat. Commun. 4, 2535. https://doi.org/10.1038/ncomms3535
  29. Wong, B. W., Marsch, E., Treps, L., Baes, M. and Carmeliet, P. (2017) Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO J. 36, 2187-2203. https://doi.org/10.15252/embj.201696150
  30. Yuneva, M. O., Fan, T. W., Allen, T. D., Higashi, R. M., Ferraris, D. V., Tsukamoto, T., Mates, J. M., Alonso, F. J., Wang, C., Seo, Y., Chen, X. and Bishop, J. M. (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157-170. https://doi.org/10.1016/j.cmet.2011.12.015
  31. Zhang, D., Wang, Y., Shi, Z., Liu, J., Sun, P., Hou, X., Zhang, J., Zhao, S., Zhou, B. P. and Mi, J. (2015) Metabolic reprogramming of cancer- associated fibroblasts by $IDH3{\alpha}$ downregulation. Cell Rep. 10, 1335-1348.
  32. Zhang, T., Somasundaram, R., Berencsi, K., Caputo, L., Rani, P., Guerry, D., Furth, E., Rollins, B. J., Putt, M., Gimotty, P., Swoboda, R., Herlyn, M. and Herlyn, D. (2005) CXC chemokine ligand 12 (stromal cell-derived factor 1 alpha) and CXCR4-dependent migration of CTLs toward melanoma cells in organotypic culture. J. Immunol. 174, 5856-5863. https://doi.org/10.4049/jimmunol.174.9.5856

Cited by

  1. Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses vol.8, pp.2234-943X, 2018, https://doi.org/10.3389/fonc.2018.00081
  2. Cancer Metabolism: a Hope for Curing Cancer vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.300
  3. Cancer; an induced disease of twentieth century! Induction of tolerance, increased entropy and ‘Dark Energy’: loss of biorhythms (Anabolism v. Catabolism) vol.7, pp.1, 2018, https://doi.org/10.1186/s40169-018-0193-6
  4. Lung Cancer Heterogeneity in Modulation of Th17/IL17A Responses vol.9, pp.None, 2018, https://doi.org/10.3389/fonc.2019.01384
  5. Macrophage Origin, Metabolic Reprogramming and IL-1β Signaling: Promises and Pitfalls in Lung Cancer vol.11, pp.3, 2019, https://doi.org/10.3390/cancers11030298
  6. Shedding New Light on Cancer Metabolism: A Metabolic Tightrope Between Life and Death vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.00409
  7. Immunometabolism: new insights and lessons from antigen-directed cellular immune responses vol.42, pp.3, 2018, https://doi.org/10.1007/s00281-020-00798-w
  8. From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy vol.144, pp.None, 2020, https://doi.org/10.1016/j.mehy.2020.110216
  9. To betray or to fight? The dual identity of the mitochondria in cancer vol.17, pp.6, 2018, https://doi.org/10.2217/fon-2020-0362
  10. RAB38 Facilitates Energy Metabolism and Counteracts Cell Death in Glioblastoma Cells vol.10, pp.7, 2018, https://doi.org/10.3390/cells10071643
  11. The MYC oncogene - the grand orchestrator of cancer growth and immune evasion vol.19, pp.1, 2018, https://doi.org/10.1038/s41571-021-00549-2