참고문헌
- H. Bahouri, J.-Y. Chemin, and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, Heidelberg, 2011.
- M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, in Handbook of mathematical fluid dynamics. Vol. III, 161-244, North-Holland, Amsterdam.
- D. Chae, Local existence and blow-up criterion for the Euler equations in the Besov spaces, Asymptot. Anal. 38 (2004), no. 3-4, 339-358.
- P. Constantin, The Euler equations and nonlocal conservative Riccati equations, Internat. Math. Res. Notices 2000, no. 9, 455-465. https://doi.org/10.1155/S1073792800000258
- R. Danchin, Fourier Analysis Methods for PDEs, Lecture Notes, November 14, 2005.
- I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
- J. D. Gibbon, A. S. Fokas, and C. R. Doering, Dynamically stretched vortices as solutions of the 3D Navier-Stokes equations, Phys. D 132 (1999), no. 4, 497-510. https://doi.org/10.1016/S0167-2789(99)00067-6
- J. D. Gibbon, D. R. Moore, and J. T. Stuart, Exact, infinite energy, blow-up solutions of the three-dimensional Euler equations, Nonlinearity 16 (2003), no. 5, 1823-1831. https://doi.org/10.1088/0951-7715/16/5/315
- W. Hardle, G. Kerkyacharian, D. Picard, and A. Tsybakov, Wavelets, Approximation, and Statistical Applications, Lecture Notes in Statistics, 129, Springer-Verlag, New York, 1998.
-
T. Kato, Nonstationary flows of viscous and ideal fluids in
${\mathbb{R}}^3$ , J. Functional Analysis 9 (1972), 296-305. https://doi.org/10.1016/0022-1236(72)90003-1 - T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891-907. https://doi.org/10.1002/cpa.3160410704
- N. Kim and B. Lkhagvasuren, On the global existence of columnar solutions of the Navier-Stokes equations, submitted.
- P. G. Lemarie-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, Boca Raton, FL, 2002.
- A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, Cambridge, 2002.
- Y. Meyer, Wavelets and Operators, translated from the 1990 French original by D. H. Salinger, Cambridge Studies in Advanced Mathematics, 37, Cambridge University Press, Cambridge, 1992.
- K. Ohkitani and J. D. Gibbon, Numerical study of singularity formation in a class of Euler and Navier-Stokes flows, Phys. Fluids 12 (2000), no. 12, 3181-3194. https://doi.org/10.1063/1.1321256
- H. Triebel, A note on wavelet bases in function spaces, in Orlicz centenary volume, 193-206, Banach Center Publ., 64, Polish Acad. Sci. Inst. Math., Warsaw, 2004.