References
- I. K. Argyros, On the secant method, Publ. Math. Debrecen 43 (1993), no. 3-4, 223-238.
- I. K. Argyros, Computational theory of iterative methods, Series: Studies in Computational Mathematics 15, Editors, C. K. Chui and L. Wuytack, Elservier Publ. Co. New York, USA, 2007.
- I. K. Argyros and H. Ren, On an improved local convergence analysis for the secant method, Numer. Algorithms 52 (2009), no. 2, 257-271. https://doi.org/10.1007/s11075-009-9271-6
- P. Deuflhard, Newton methods for nonlinear problems, Springer Series in Computational Mathematics, 35, Springer-Verlag, Berlin, 2004.
- J. A. Ezquerro, M. Grau-Sanchez, M. A. Hernandez, and M. Noguera, Semilocal convergence of secant-like methods for differentiable and nondifferentiable operator equations, J. Math. Anal. Appl. 398 (2013), no. 1, 100-112. https://doi.org/10.1016/j.jmaa.2012.08.040
- M. A. Hernandez and M. J. Rubio, A uniparametric family of iterative processes for solving nondifferentiable equations, J. Math. Anal. Appl. 275 (2002), no. 2, 821-834. https://doi.org/10.1016/S0022-247X(02)00432-8
- M. A. Hernandez and M. J. Rubio, On the ball of convergence of secant-like methods for non-differentiable operators, Appl. Math. Comput. 273 (2016), 506-512.
- M. A. Hernandez, M. J. Rubio, and J. A. Ezquerro, Solving a special case of conservative problems by secant-like methods, Appl. Math. Comput. 169 (2005), no. 2, 926-942. https://doi.org/10.1016/j.amc.2004.09.070
- Z. Huang, The convergence ball of Newton's method and the uniqueness ball of equations under Holder-type continuous derivatives, Comput. Math. Appl. 47 (2004), no. 2-3, 247-251. https://doi.org/10.1016/S0898-1221(04)90021-1
- L. V. Kantorovich and G. P. Akilov, Functional Analysis, translated from the Russian by Howard L. Silcock, second edition, Pergamon Press, Oxford, 1982.
- F. A. Potra and V. Ptak, Nondiscrete induction and iterative processes, Research Notes in Mathematics, 103, Pitman (Advanced Publishing Program), Boston, MA, 1984.
- H. Ren and I. K. Argyros, Local convergence of effcient Secant-type methods for solving nonlinear equations, Appl. Math. Comput. 218 (2012), no. 14, 7655-7664. https://doi.org/10.1016/j.amc.2012.01.036
- H. Ren and Q. B. Wu, The convergence ball of the Secant method under Hoder continuous divided differences, J. Comput. Appl. Math. 194 (2006), 284-293. https://doi.org/10.1016/j.cam.2005.07.008
- J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964.
- X. H. Wang, Error estimates for some numerical root-finding methods, Acta Math. Sinica 22 (1979), no. 5, 638-642.
- X. H. Wang, On the domain of convergence of Newton's method, Kexue Tongbao (Chinese) 25 (1980), Special Issue, 36-37.