References
- Abbey, S., Ngambi, S. and Ganjian, E. (2017), "Development of strength models for prediction of unconfined compressive strength of cement/by-product material improved soils", Geotech. Test. J., 40(6), 928-935.
- Abi-Rekha, L., Keerthana, B. and Ameerlal, H. (2016), "Performance of fly ash stabilized clay reinforced with human hair fiber", Geomech. Eng., 10(5), 677-687. https://doi.org/10.12989/GAE.2016.10.5.677
- Abou Diab, A., Sadek, S., Najjar, S. and Abou Daya, M.H. (2016), "Undrained shear strength characteristics of compacted clay reinforced with natural hemp fibers", Int. J. Geotech. Eng., 10(3), 263-270. https://doi.org/10.1080/19386362.2015.1132122
- Akin, D.I. and Likos, W.J. (2017), "Brazilian tensile strength testing of compacted clay", Geotech. Test. J., 40(4), 608-617.
- Akinwumi, I.I. and Booth, C.A. (2015), "Experimental insights of using waste marble fines to modify the geotechnical properties of a lateritic soil", J. Environ. Eng. Landscape Manage., 23(2), 121-128. https://doi.org/10.3846/16486897.2014.1002843
- Alsharef, J.M.A., Taha, M.R., Firoozi, A.A. and Govindasamy, P. (2016), "Potential of using nanocarbons to stabilize weak soils", Appl. Environ. Soil Sci., 1-9.
- Anggraini, V., Asadi, A., Huat, B.B.K. and Nahazanan, H. (2015), "Effects of coir fibers on tensile and compressive strength of lime treated soft soil", Measurement, 59, 372-381. https://doi.org/10.1016/j.measurement.2014.09.059
- ASTM D2166 / D2166M-16 (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM D2487-11 (2011), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM D3967-16 (2016), Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM D698-12 (2012), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Aziz, M., Saleem, M. and Irfan, M. (2015), "Engineering behavior of expansive soils treated with rice husk ash", Geomech. Eng., 8(2), 173-186. https://doi.org/10.12989/GAE.2015.8.2.173
- Babu, G.L.S., Vasudevan, A.K. and Sayida, M.K. (2008), "Use of coir fibers for improving the engineering properties of expansive soils", J. Nat. Fibers, 5(1), 61-75. https://doi.org/10.1080/15440470801901522
- Bahmani, S.H., Huat, B.B.K., Asadi, A. and Farzadnia, N. (2014), "Stabilization of residual soil using SiO2 nanoparticles and cement", Constr. Build. Mater., 64, 350-359. https://doi.org/10.1016/j.conbuildmat.2014.04.086
- Chaipanich, A., Nochaiya, T., Wongkeo, W. and Torkittikul, P. (2010), "Compressive strength and microstructure of carbon nanotubes-fly ash cement composites", Mater. Sci. Eng., 527(4-5), 1063-1067. https://doi.org/10.1016/j.msea.2009.09.039
- Correia, A.A.S., Venda-Oliveira, P.J. and Custodio, D.G. (2015), "Effect of polypropylene fibers on the compressive and tensile strength of a soft soil, artificially stabilized with binders", Geotext. Geomembranes, 43(2), 97-106. https://doi.org/10.1016/j.geotexmem.2014.11.008
- Cui, L. (2013), "Incorporation of multiwalled carbon nanotubes to ordinary Portland cement (OPC): Effects on mechanical properties", Adv. Mater. Res., 641-642, 436-439. https://doi.org/10.4028/www.scientific.net/AMR.641-642.436
- Estabragh, A., Namdar, P. and Javadi, A. (2012), "Behavior of cement-stabilized clay reinforced with nylon fiber", Geosynth. Int., 19(1), 85-92. https://doi.org/10.1680/gein.2012.19.1.85
- Fatahi, B., Khabbaz, H. and Fatahi, B. (2012), "Mechanical characteristics of soft clay treated with fiber and cement", Geosynth. Int., 19(3), 252-262. https://doi.org/10.1680/gein.12.00012
- Firoozi, A.A., Taha, M.R., Firoozi, A.A. and Khan, T.A. (2015), "Effect of ultrasonic treatment on clay microfabric evaluation by atomic force microscopy", Measurement, 66, 244-252. https://doi.org/10.1016/j.measurement.2015.02.033
- Ghasabkolaeia, N., Choobbastia, A.J., Roshana, N. and Ghasemib, S.E. (2017), "Geotechnical properties of the soils modified with nanomaterials: A comprehensive review", Arch. Civ. Mech. Eng., 17(3), 639-650. https://doi.org/10.1016/j.acme.2017.01.010
- Ghazi, H., Baziar, M.H. and Mirkazemi, S.M. (2011), "The effect of nanomaterial additives on the basic properties of soil", Proceedings of the 14th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Hong Kong, May.
- Gullu, H. and Fedakar, H.I. (2017), "Unconfined compressive strength and freeze-thaw resistance of sand modified with sludge ash and polypropylene fiber", Geomech. Eng., 13(1), 25-41. https://doi.org/10.12989/GAE.2017.13.1.025
- Jorio, A., Dresselhaus, G. and Dresselhaus, M.S. (2008), Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Springer-Verlag Berlin Heidelberg, Berlin, Germany.
- Kamei, T., Ahmed, A. and Ugai, K. (2013), "Durability of soft clay soil stabilized with recycled Bassanite and furnace cement mixtures", Soil. Found., 53(1), 155-165. https://doi.org/10.1016/j.sandf.2012.12.011
- Kitazume, M. and Terashi, M. (2017) The Deep Mixing Method, CRC Press, Leiden, The Netherlands.
- Konsta-Gdoutos, M.S. and Aza, C.A. (2014), "Self-sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures", Cement Concrete Compos., 53, 162-169. https://doi.org/10.1016/j.cemconcomp.2014.07.003
- Latifi, N., Meehan, C.L., Majid, M.Z.A. and Horpibulsuk, S. (2016), "Strengthening montmorillonitic and kaolinitic clays using a calcium-based non-traditional additive: A micro-level study", Appl. Clay Sci., 132, 182-193.
- Lawrence, J.G., Berhan, L.M. and Nadarajah, A. (2008), "Elastic properties and morphology of individual carbon nanofibers", ACS Nano, 2(6), 1230-1236. https://doi.org/10.1021/nn7004427
- Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831
- Lehman, J.H., Terrones, M., Mansfield, E., Hurst, K.E. and Meunier, V. (2011), "Evaluating the characteristics of multiwall carbon nanotubes", Carbon, 49(8), 2581-2602. https://doi.org/10.1016/j.carbon.2011.03.028
- Li, J., Tang, C., Wang, D., Pei, X. and Shi, B. (2014), "Effect of discrete fiber reinforcement on soil tensile strength", J. Rock Mech. Geotech. Eng., 6(2), 133-137. https://doi.org/10.1016/j.jrmge.2014.01.003
- Manzur, T. and Yazdani, N. (2016), "Effect of different parameters on properties of multi-walled carbon nanotube-reinforced cement composites", Arab. J. Sci. Eng., 41(12), 4835-4845. https://doi.org/10.1007/s13369-016-2181-8
- Nochaiya, T. and Chaipanich, A. (2011), "Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials", Appl. Surf. Sci, 257(6), 1941-1945. https://doi.org/10.1016/j.apsusc.2010.09.030
- Peyvandi, A., Sbia, L.A., Soroushian, P. and Sobolev, K. (2013), "Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite", Constr. Build. Mater., 48, 265-269. https://doi.org/10.1016/j.conbuildmat.2013.06.094
- Rashid, A.S.A., Latifi, N., Meehan, C.L. and Manahiloh, K.N. (2017), "Sustainable improvement of tropical residual soil using an environmentally friendly additive", Geotech. Geol. Eng., 35(6), 2613-2623. https://doi.org/10.1007/s10706-017-0265-1
- Tang, C.S., Wang, D.Y., Cui, Y.J., Shi, B. and Li, J. (2016), "Tensile strength of fiber-reinforced soil", J. Mater. Civ. Eng., 28(7), 04016031. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001546
- Vaisman, L., Marom, G. and Wagner, H.D. (2006), "Dispersions of surface-modified carbon nanotubes in water-soluble and waterinsoluble polymers", Adv. Funct. Mater., 16(3), 357-363. https://doi.org/10.1002/adfm.200500142
- Wang, Z., Ci, L., Chen, L., Nayak, S., Ajayan, P.M. and Koratkar, N. (2007), "Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes", Nano Lett., 7(3), 697-702. https://doi.org/10.1021/nl062853g
- Yazdani, N. and Mohanam, V. (2014), "Carbon nano-tube and nano-fiber in cement mortar: Effect of dosage rate and water-cement ratio", Int. J. Mater. Sci., 4(2), 45-52. https://doi.org/10.14355/ijmsci.2014.0402.01