DOI QR코드

DOI QR Code

Anti-neuroinflammatory Effects of a Locusta migratoria Ethanol Extract in LPS-stimulated BV-2 Microglia

LPS로 자극된 미세아교세포에서 풀무치 에탄올 추출물의 신경염증 억제 효능

  • Lee, Hwa Jeong (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Seo, Minchul (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Joon Ha (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, In-Woo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Sun Young (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hwang, Jae-Sam (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Mi-Ae (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
  • 이화정 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 서민철 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 이준하 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 김인우 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 김선영 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 황재삼 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 김미애 (농촌진흥청 국립농업과학원 농업생물부)
  • Received : 2018.09.10
  • Accepted : 2018.10.04
  • Published : 2018.11.30

Abstract

Activated microglia, induced by various pathogens, protect neurons and maintain homeostasis of the central nervous system (CNS). However, severe activation causes neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease because of the secretion of various neurotoxic molecules, such as nitric oxide (NO), prostaglandin (PG), and pro-inflammatory cytokines. Because chronic microglial activation endangers neuronal survival, negative regulators of microglial activation have been identified as potential therapeutic candidates for treatment of many neurological diseases. One potential source of these regulators is Locusta migratoria, a grasshopper of the Acrididae, usually 4-6 cm in size, belonging to the family of large insects in Acrididae. This grasshopper is an edible insect resource that can be consumed by humans as protein source or used for animal feed. The aim of the present study was to examine the inhibitory effects of a L. migratoria ethanol extract (LME) on the production of inflammatory mediators in LPS-stimulated BV-2 microglia cells. The extract significantly inhibited the NO, iNOS, COX-2, and pro-inflammatory cytokine ($TNF-{\alpha}$, IL-6 and $IL-1{\beta}$) levels in BV-2 microglia cell. Because the inhibition of microglial activation may be an effective solution for treating brain disorders like Alzheimer's and Parkinson's diseases, these results suggest that LME may be a potential therapeutic agent for the treatment of brain disorders induced by neuroinflammation.

뇌신경 질환의 주요 원인이 되는 것으로 알려진 미세아교세포의 과도한 활성화에 의한 신경염증반응에서 풀무치 에탄올 추출물이 미세아교세포의 염증 반응에 미치는 영향을 검토하였다. 미세아교세포의 활성화를 유도하기 위해 LPS를 사용하였으며, LPS 처리에 의해 신경염증반응의 지표인 NO의 생성량과 이들을 조절하는 iNOS, COX-2의 발현이 증가됨을 확인 할 수 있었다. 그러나 풀무치 에탄올 추출물을 1시간 전처리 한 후 LPS를 처리한 경우 추출물의 농도에 의존적으로 이들의 발현량이 현저히 감소되는 것을 확인 하였다. 또한 LPS 처리로 인해 분비되는 염증성 cytokine들의 생성량도 풀무치 에탄올 추출물에 의해 현저히 억제 됨을 확인 할 수 있었다. 따라서 본 연구의 결과는 미세아교세포의 과도한 활성화로 인해 발생되는 뇌 신경질환의 치료 소재로서 풀무치 에탄올 추출물의 활성 가능성을 제시하였다.

Keywords

SMGHBM_2018_v28n11_1332_f0001.png 이미지

Fig. 1. LME on the cell viability in BV-2 microglia.

SMGHBM_2018_v28n11_1332_f0002.png 이미지

Fig. 2. Inhibitory effect of LME extract on the production of nitric oxide in BV-2 microglia.

SMGHBM_2018_v28n11_1332_f0003.png 이미지

Fig. 3. Inhibitory effect of LME on iNos and Cox-2 expression in LPS stimulated BV-2 microglia.

SMGHBM_2018_v28n11_1332_f0004.png 이미지

Fig. 4. Inhibitory effect of LME on the protein levels of iNOS and COX-2 in LPS stimulated BV-2 microglia.

SMGHBM_2018_v28n11_1332_f0005.png 이미지

Fig. 5. Inhibitory effect of LME on the production of proinflammatory cytokine in LPS stimulated BV-2 microglia.

Table 1. Sequences of primes used for RT-PCR

SMGHBM_2018_v28n11_1332_t0001.png 이미지

References

  1. Angus, J. A. and Cocks, T. M. 1989. Endothelium-derived reaxing factor. Pharmacol. Ther. 41, 303-352. https://doi.org/10.1016/0163-7258(89)90112-5
  2. Benveniste, E. N. 1997. Immunology of the nervous system. pp.419-459. Oxford University press, New York.
  3. Benveniste, E. N. 1998. Cytokine actions in the central nervous system. Cytokine Growth Factor Rev. 9, 259-275. https://doi.org/10.1016/S1359-6101(98)00015-X
  4. Beutler, B. and Cerami, A. 1988. The history, properties, and biological effects of cachectin. Biochemistry 27, 7575-7582. https://doi.org/10.1021/bi00420a001
  5. Boje, K. M. and Arora, P. K. 1992. Microglia-produced nitric oxide and reactive nitrogen oxide mediate neuronal cell death. Brain Res. 587, 250-256. https://doi.org/10.1016/0006-8993(92)91004-X
  6. Cross, A. K. and Woodroofd, M. N. 2001. Immunoregulation of microglial functional properties. Microsc. Res. Tech. 54, 10-17. https://doi.org/10.1002/jemt.1115
  7. Farrow, R. A. and Colless, D. H. 1980. Analysis of the interrelationships of geographical races of Locusta migratoria (Linnaeus) (Orthoptera: Acrididae), by numerical taxonomy, with special reference to sub-speciation, in the tropics and affinities of the Australian race. Acrida 9, 77-99.
  8. Gonzalez-Scarano, F. and Baltuch, G. 1999. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22, 219-240. https://doi.org/10.1146/annurev.neuro.22.1.219
  9. Hanada, T. and Yoshimura, A. 2002. Regulation of cytokine signaling and inflammation. Cytokine growth Factor. Rev. 3, 413-421.
  10. Hobbs, A., Higgs, A. and Moncada, S. 1999. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 39, 191-220. https://doi.org/10.1146/annurev.pharmtox.39.1.191
  11. Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. and Chaudhuri, G. 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA. 84, 9265-9269. https://doi.org/10.1073/pnas.84.24.9265
  12. Lee, M. R., Kim, J. C., Lee, S. J., Kim, S. H., Lee, S. J., Park, S. E., Lee, W. H. and Kim, J. S. 2017. Assessment of Physiological Activity of Entomopathogenic Fungi with Insecticidal Activity Against Locusts. Kor. J. Appl. Entomol. 56, 301-308. https://doi.org/10.5656/KSAE.2017.08.0.019
  13. Knott, C., Shern, G. and Wilkin, G. P. 2000. Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyflooxygenase-1 and -2. Mol. Cell. Neurosci. 16, 724-739. https://doi.org/10.1006/mcne.2000.0914
  14. Mason, R. P. and Cockcroft, J. R. 2006. Targeting nitric oxide with drug therapy. J. Clin. Hypertens (Greenwich) 8, 40-52. https://doi.org/10.1111/j.1524-6175.2006.06041.x
  15. McCartney-Francis, N., Allen, J. B., Mizel, D. E., Albina, J. E., Xie, Q. W., Nathan, C. F. and Wahl, S. M. 1993. Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med. 178, 749-754. https://doi.org/10.1084/jem.178.2.749
  16. Okamoto, S. and Lipton, S. A. 2015. S-nitrosylation in neurogenesis and neuro-nal development. Biochim. Biophys. Acta. 1850, 1588-1593. https://doi.org/10.1016/j.bbagen.2014.12.013
  17. Park, D. S., Yoon, M. Z., Xu, H., Yu, J. R. and Kom, T. S. 2004. Screening of anti-atherogenic substances from insect resources. Kor. J. Phar-macogn. 35, 233-238.
  18. Park, J. H., Kim, S. H. and Lee, S. R. 2017. Inhibitory effect of Petalonia binghamiae on neuroinflammation in LPS-stimulated microglial cells. J. Nutr. Health. 50, 25-31. https://doi.org/10.4163/jnh.2017.50.1.25
  19. Park, J. Y., Heo, S. M., An, E. Y., Han, J. S., Hwang, S. W. and Kang, C. Y. 2005. High throughput-compatible screening of anti-oxida-tive substances by insect extract library. Kor. J. Food Preserv. 12, 482-488.
  20. Perry, V. H. and Gordon, S. 1997. Immunology of the nervous system. pp.155-172. Oxford University press, New York.
  21. Pfeilschifter, J., Eberhardt, W., Hummel, R., Kunz, D., Muhl, H., Nitsch, D., Pluss, C. and Walker, G. 1996. Therapeutic strategies for the inhibition of inducible nitric oxide synthase-potential for a novel class of anti-inflammatory agents. Cell Biol. Int. 20, 51-58. https://doi.org/10.1006/cbir.1996.0008
  22. Salvemini, D., Misko, T. P., Masferrer, J. L., Seibert, K., Cur-rie, M. G. and Needleman, P. 1993. Nitric oxide activates cyclooxygenase enzymes. Proc. Natl. Acad. Sci. USA. 90, 7240-7244. https://doi.org/10.1073/pnas.90.15.7240
  23. Scapagnini, G., Foresti, R., Calabrese, V., Giuffrida Stella, A. M., Green, C. J. and Motterlini, R. 2002. Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol. Pharmacol. 3, 554-561.
  24. Seo, M. C., Lee, J. H., Baek, M. H., Kim, M. A., Ahn, M. Y., Kim, S. H., Yun, E. Y. and Hwang, J. S. 2017. A novel role for earthworm peptide Lumbricusin as a regelator of neurinfammation. Biochem. Biophys. Res. Commun. 490, 1004-1010. https://doi.org/10.1016/j.bbrc.2017.06.154
  25. Son, E. H., Lee, J. W. and Yoo, J. Y. 2004. Brain disease treatment. KISTI. 11, 1-39.
  26. Takeuchi, T. 2007. Clinical development and future perspective of biological agents. Nippon Rinsho Review 65, 1185-1188.
  27. Uvarov, B. P. 1977. Grasshoppers and Locusts. pp.475. Centre for Overseas Pest Research, London.
  28. Tassoni, D., Kaur, G., Weisinger, R. S. and Sinclair, A. J. 2008. The role of eicosanoids in the brain. Asia Pac. J. Clin. Nutr. 17, 220-228.
  29. Yoon, H. J., Lee Y, B., Lee, K. Y., Kim. S. Y. and Jeong, J. K. 2016. Artificial breeding method of Locust migratoria. Korea patent. 10-2016-0071011.