DOI QR코드

DOI QR Code

통계적 상세화 기법을 통한 기후변화기반 지속시간별 연최대 대표 강우시나리오 생산기법 소개

Introduction to the production procedure of representative annual maximum precipitation scenario for different durations based on climate change with statistical downscaling approaches

  • 이태삼 (경상대학교 공학연구원 토목공학과)
  • Lee, Taesam (ERI, Department of Civil Engineering, Gyeongsang National University)
  • 투고 : 2018.06.30
  • 심사 : 2018.10.29
  • 발행 : 2018.11.30

초록

기후변화는 홍수의 가장 큰 원인이 되는 극치강우의 빈도와 크기에 매우 큰 영향을 미치고 있다. 특히, 우리나라에서 발생하는 대규모 재해는 강우에 의한 홍수피해가 대부분을 차지하고 있다. 이러한 홍수피해는 기후변화에 의한 극한강우의 발생 빈도가 높아짐에 따라 새로운 재해양상으로 전개되고 있다. 하지만, 미래 기후변화 시나리오 자료는 해상도의 한계로 인하여 중소규모 하천 및 도시유역에 요구되는 수준의 자료 수집이 불가능한 상태이다. 이러한 문제점을 개선하기 위하여 본 연구에서는 전지구모형에서 생산된 기후변화 시나리오에 대해서 여러 단계의 통계적 상세화 기법을 통하여 우리나라 전역에 대하여 미래 시나리오에 대한 빈도해석이 가능하도록 각 지점의 특성에 따라 시간적으로 상세화하기 위해 개발된 방법 및 과정을 소개하였다. 이를 통해, 시간상세화 자료를 토대로 미래 강우에 대한 빈도해석과 기후변화에 따른 방재성능 목표강우량을 산정하는데 활용할 수 있도록 하였다.

Climate change has been influenced on extreme precipitation events, which are major driving causes of flooding. Especially, most of extreme water-related disasters in Korea occur from floods induced by extreme precipitation events. However, future climate change scenarios simulated with Global Circulation Models (GCMs) or Reigonal Climate Models (RCMs) are limited to the application on medium and small size rivers and urban watersheds due to coarse spatial and temporal resolutions. Therefore, the current study introduces the state-of-the-art approaches and procedures of statistical downscaling techniques to resolve this limitation It is expected that the temporally downscaled data allows frequency analysis for the future precipitation and estimating the design precipitation for disaster prevention.

키워드

SJOHCI_2018_v51nspc_1057_f0001.png 이미지

Fig. 1. Procedure of producing the representative climate scenarios of annual maximum precipitation for different durations with statistical downscaling approaches. Note that‘base’ indicates the period of 1979~2005 and ‘future’ does the period of 2006~2100

SJOHCI_2018_v51nspc_1057_f0002.png 이미지

Fig. 2. Model development of nonparametric temporal downscaling from lee and jeong (2014) (left panel) to lee and park (2017) (right panel)

SJOHCI_2018_v51nspc_1057_f0003.png 이미지

Fig. 3. Employed weather stations in the current study

SJOHCI_2018_v51nspc_1057_f0004.png 이미지

Fig. 4. Performance measurement as likelihood, RMSE, and AIC for each non-mixture and mixture distributions

SJOHCI_2018_v51nspc_1057_f0005.png 이미지

Fig. 5. Return periods versus annual maximum precipitation for different durations at goheung station

SJOHCI_2018_v51nspc_1057_f0006.png 이미지

Fig. 6. The results of the mean of annual maximum precipitation (x-axis) for different durations at mokpo from lee and jeong (2014) (left panel) to lee and park (2017) (right panel)

SJOHCI_2018_v51nspc_1057_f0007.png 이미지

Fig. 7. Time series of annual maximum precipitation for different durations at Mokpo station. note that the base period is between 1979~2005 and future period for the rcp8.5 scenario is 2006~2100. solid line indicates the observed data and the gray lines are 100 downscaled series and their median with red dotted line

SJOHCI_2018_v51nspc_1057_f0008.png 이미지

Fig. 8. Trace selection method of RCP8.5 employing (a) mean and std.(see Eq.(3)), (b) density estimate(see Eq.(4)), (c ) empirical CDF(see Eq.(5))

SJOHCI_2018_v51nspc_1057_f0009.png 이미지

Fig. 9. Mean of selected representative annual maximum precipitation for different durations for the base period and future periods of RCP8.5. Here, P1: 2006~2040, P2: 2041~2070, P3: 2071~2100

참고문헌

  1. Alexandrov, V. A., and Hoogenboom, G. (2000). "The impact of climate variability and change on crop yield in Bulgaria." Agricultural and Forest Meteorology, Vol. 104, No. 4, pp. 315-327. doi:http://dx.doi.org/10.1016/S0168-1923(00)00166-0.
  2. Boe, J., Terray, L., Habets, F., and Martin, E. (2007). "Statistical and dynamical downscaling of the Seine basin climate for hydrometeorological studies." International Journal of Climatology, Vol. 27, No. 12, pp. 1643-1655. https://doi.org/10.1002/joc.1602
  3. Chen, H., Sun, J., and Wang, H. (2012). "A statistical downscaling model for forecasting summer rainfall in China from DEMETER hindcast datasets." Weather and Forecasting, Vol. 27, No. 3 pp. 608-628. 10.1175/WAF-D-11-00079.1.
  4. Chen, Y., Takeuchi, K., Xu, C., Chen, Y., and Xu, Z. (2006). "Regional climate change and its effects on river runoff in the Tarim Basin China." Hydrological Processes, Vol. 20, pp. 2207-2216. https://doi.org/10.1002/hyp.6200
  5. Cohen, S. J., Miller, K. A., Hamlet, A. F., and Avis, W. (2000). "Climate change and resource management in the Columbia River Basin." Water International, Vol. 25, No. 2, pp. 253-272. https://doi.org/10.1080/02508060008686827
  6. Deque, M. (2007). "Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values." Global and Planetary Change, Vol. 57, No. 1-2, pp. 16-26. doi:http://dx.doi.org/10.1016/j.gloplacha.2006.11.030.
  7. Fowler, H., Blenkinsop, S., and Tebaldi, C. (2007). "Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling." International Journal of Climatology, Vol. 27, No. 12, pp. 1547-1578. https://doi.org/10.1002/joc.1556
  8. Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D., and Piani, C. (2011). "Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models." Journal of Hydrometeorology, Vol. 12, pp. 556-578. https://doi.org/10.1175/2011JHM1336.1
  9. Hansen, J. W., Challinor, A., Ines, A., Wheeler, T., and Moron, V. (2006). "Translating climate forecasts into agricultural terms advances and challenges." Climate research, Vol. 33, pp. 27-41. https://doi.org/10.3354/cr033027
  10. Hwang, J., Ahn, J., Jeong, C., and Heo, J. H. (2018). "A study on the variation of design flood due to climate change in the ungauged urban catchment." Journal of Korea Water Resources Association, Vol. 51, No. 5, pp. 395-404. https://doi.org/10.3741/JKWRA.2018.51.5.395
  11. Kilsby, C. G., Cowpertwait, P. S. P., O'Connell, P. E., and Jones, P. D. (1998). "Predicting rainfall statistics in England and Wales using atmospheric circulation variables." International Journal of Climatology, Vol. 18, pp. 523-539. doi:10.1002/(SICI)1097-0088(199804)18:5<523::AID-JOC268>3.0.CO;2-X.
  12. Koutsoyiannis, D., and Onof, C. (2001). "Rainfall disaggregation using adjusting procedures on a Poisson cluster model." Journal of Hydrology, Vol. 246, No. 1-4, pp. 109-122. https://doi.org/10.1016/S0022-1694(01)00363-8
  13. Krajewski, W. F., Lakshmi, V., Georgakakos, K. P., and Jain, S. C. (1991). "A Monte Carlo study of rainfall sampling effect on a distributed catchment model." Water Resources Research, Vol. 27, pp. 119-128. https://doi.org/10.1029/90WR01977
  14. Kumara, J., Brooksb, G. J., Thorntonc, P. E., and Dietzeb, M. C. (2012). "Sub-daily Statistical Downscaling of Meteorological Variables Using Neural Networks." Procedia Computer Science, p. 9.
  15. Lee, T., and Jeong, C. (2014). "Nonparametric statistical temporal downscaling of daily precipitation to hourly precipitation and implications for climate change scenarios." Journal of Hydrology, Vol. 510, pp. 182-196. doi:10.1016/j.jhydrol.2013.12.027.
  16. Lee, T., and Park, T. (2017). "Nonparametric temporal downscaling with event-based population generating algorithm for RCM daily precipitation to hourly: Model development and performance evaluation." Journal of Hydrology, Vol. 547, pp. 498-516 doi:10.1016/j.jhydrol.2017.01.049.
  17. Lee, T., Ouarda, T. B. M. J., and Jeong, C. (2012). "Nonparametric multivariate weather generator and an extreme value theory for bandwidth selection." Journal of Hydrology, pp. 452-453:161-171.10.1016/j.jhydrol.2012.05.047.
  18. Lee, T., Singh, V., and Kim, S. (2018). "Trace Selection Method for a Best Representative in Stochastic Downscaling of Precipitation." Journal of Hydrology In Review.
  19. Lettenmaier, D., Wood, A., Palmer, R., Wood, E., and Stakhiv, E. (1999). "Water Resources Implications of Global Warming: A U.S. Regional Perspective." Climatic Change, Vol. 43, No. 3, pp. 537-579. doi:10.1023/A:1005448007910.
  20. Marani, M., and Zanetti, S. (2007). "Downscaling rainfall temporal variability." Water Resources Research, Vol. 43, No. 9, 10.1029/2006WR005505.
  21. Panofsky, H. A., and Brier, G. W. (1968). "Some Applications of Statistics to Meteorology." Earth and Mineral Sciences Continuing Education, College of Earth and Mineral Sciences.
  22. Park, B. S., Lee, J. H., Kim, C. J., Jang, H. W. (2013). "Projection of Future Drought of Korea Based on Probabilistic Approach Using Multi-model and Multi Climate Change Scenarios." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 5, pp. 1871-1885. https://doi.org/10.12652/Ksce.2013.33.5.1871
  23. Sharma, D., Gupta, A. D., and Babel, M. (2007). "Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin Thailand." Hydrology and Earth System Sciences Discussions, Vol. 11, pp. 1373-1390. https://doi.org/10.5194/hess-11-1373-2007
  24. Shin, J.-Y., Lee, T., Park, T., and Kim, S. (2018). "Bias Correction of RCM outputs using Mixture Distributions under Multiple Extreme Weather Influences." Theorecial and Applied Climatology Accepted.
  25. Themessl, M. J., Gobiet, A., and Leuprecht, A. (2011). "Empirical-statistical downscaling and error correction of daily precipitation from regional climate models." International Journal of Climatology, Vol. 31, pp. 1530-1544. doi:10.1002/joc.2168.
  26. van Pelt, S. C., Beersma, J. J., Buishand, T. A., van den Hurk, B. J. J. M., and Kabat, P. (2012). "Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations." Hydrology and Earth System Sciences, Vol. 16, pp. 4517-4530. doi:10.5194/hess-16-4517-201.
  27. Wang, G., and Liu, J. (2006). The digital watershed model for the Yellow River basin. China Science Press, Beijing.