DOI QR코드

DOI QR Code

적층 제조된 H13 공구강의 미세조직과 기계적 특성간의 상관관계

Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel

  • 안우진 (경상대학교 나노신소재융합공학과) ;
  • 박준혁 (경상대학교 나노신소재융합공학과) ;
  • 이정섭 (경상대학교 나노신소재융합공학과) ;
  • 최중호 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 정임두 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 유지훈 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 김상식 (경상대학교 나노신소재융합공학과) ;
  • 성효경 (경상대학교 나노신소재융합공학과)
  • An, Woojin (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Park, Junhyeok (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Lee, Jungsub (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Choe, Jungho (Powder & Ceramics Division, Korea Institute of Materials Science) ;
  • Jung, Im Doo (Powder & Ceramics Division, Korea Institute of Materials Science) ;
  • Yu, Ji-Hun (Powder & Ceramics Division, Korea Institute of Materials Science) ;
  • Kim, Sangshik (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Sung, Hyokyung (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
  • 투고 : 2018.09.08
  • 심사 : 2018.10.17
  • 발행 : 2018.11.27

초록

H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/s and a layer thickness of $25{\mu}m$. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4 %, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.

키워드

참고문헌

  1. J.-H. Lee, J.-H. Jang, B.-D. Joo, Y.-M. Son and Y.-H. Moon, Trans. Nonferrous Met. Soc. China, 19, 917 (2009). https://doi.org/10.1016/S1003-6326(08)60377-5
  2. M. Koneshlou, K. M. Asl and F. Khomamizadeh, Cryogenics, 51, 55 (2011). https://doi.org/10.1016/j.cryogenics.2010.11.001
  3. J. Mazumder, J. Choi, K. Nagarathnam, J. Koch and D. Hetzner, JOM, 49, 55 (1997).
  4. J. Yun, J. Choe, H. Lee, K.-B. Kim, S. Yang, D.-Y. Yang, Y.-J. Kim, C.-W. Lee and J.-H. Yu, J. Korean Powder Metall. Inst., 24, 195 (2017). https://doi.org/10.4150/KPMI.2017.24.3.195
  5. D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, Acta Mater., 117, 371 (2016). https://doi.org/10.1016/j.actamat.2016.07.019
  6. W. E. Frazier, J. Mater. Eng. Perform., 23, 1917 (2014). https://doi.org/10.1007/s11665-014-0958-z
  7. G. H. Shin, J. P. Choi, K. T. Kim, B. K. Kim and J. H. Yu, J. Korean Powder Metall. Inst., 24, 210 (2017). https://doi.org/10.4150/KPMI.2017.24.3.210
  8. L. Sheridan, O. Scott-Emuakpor, T. George and J. E. Gockel, Mater. Sci. Eng. A, 727, 170 (2018). https://doi.org/10.1016/j.msea.2018.04.075
  9. L. Ceschini, I. Boromei, A. Morri, S. Seifeddine and I. L. Svensson, Mater. Des., 36, 522 (2012). https://doi.org/10.1016/j.matdes.2011.11.047
  10. C. Qiu, N. J. E. Adkins and M. M. Attallah, J. Mater. Sci. Eng. A, 578, 230 (2013). https://doi.org/10.1016/j.msea.2013.04.099
  11. H. Masuo, Y. Tanaka, S. Morokoshi, H. Yagura, T. Uchida, Y. Yamamoto and Y. Murakami, Int. J. fatigue, 117, 163 (2018). https://doi.org/10.1016/j.ijfatigue.2018.07.020
  12. X. Tan, Y. Kok, Y. J. Tan, M. Descoins, D. Mangelinck, S. B. Tor, K. F. Leong and C.K. Chua, Acta Mater., 97, 1 (2015). https://doi.org/10.1016/j.actamat.2015.06.036
  13. J. Cahoon, Metall. Mater. Trans. B, 3, 3040 (1972). https://doi.org/10.1007/BF02652880
  14. W. Lu, Y. Shi, X. Li and Y. Lei, J. Mater. Eng. Perform., 22, 1694 (2013). https://doi.org/10.1007/s11665-012-0469-8
  15. R. Rai, J. W. Elmer, T. A. Palmer and T. DebRoy, J. Phys. D: Appl. Phys., 40, 5753 (2007). https://doi.org/10.1088/0022-3727/40/18/037
  16. R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu and W. Jiang, Appl. Surf. Sci., 256, 4350 (2010). https://doi.org/10.1016/j.apsusc.2010.02.030
  17. H. Zhao and T. DebRoy, J. Appl. Phys., 93, 10089 (2003). https://doi.org/10.1063/1.1573732
  18. D. Gu and Y. Shen, Mater. Des., 30, 2903 (2009). https://doi.org/10.1016/j.matdes.2009.01.013
  19. T. LeBrun, T. Nakamoto, K. Horikawa and H. Kobayashi, Mater. Des., 81, 44 (2015). https://doi.org/10.1016/j.matdes.2015.05.026
  20. B.-K. Jang and H. Matsubara, Mater. Lett., 59, 3462 (2005). https://doi.org/10.1016/j.matlet.2005.06.014
  21. M. Simoelli, Y. Y. Tse and C. Tuck, Mater. Sci. Eng. A, 616, 1 (2014). https://doi.org/10.1016/j.msea.2014.07.086
  22. Q. Zhang, Z. Zuo and J. Liu, Eng. Fail. Anal., 48, 11 (2015). https://doi.org/10.1016/j.engfailanal.2014.10.016
  23. J. Choe, J. Yun, D.-Y. Yang, S. Yang, J.-H. Yu, C.-W. Lee and Y.-J. Kim, J. Korean Powder Metall. Inst., 24, 187 (2017). https://doi.org/10.4150/KPMI.2017.24.3.187
  24. H. Asgari and M. Mohammadi, Mater. Sci. Eng. A, 709, 82 (2018). https://doi.org/10.1016/j.msea.2017.10.045
  25. P. Krakhmalev, G. Fredriksson, I. Yadroitsava, N. Kazantseva, A. D. Plessis and I. Yadroitsev, Phys. Procedia, 83, 778 (2016). https://doi.org/10.1016/j.phpro.2016.08.080