DOI QR코드

DOI QR Code

The Method to Reduce the Driving Time of Gentry

겐트리 구동시간의 단축 방법

  • Received : 2018.03.13
  • Accepted : 2018.05.17
  • Published : 2018.11.30

Abstract

When more parts are mounted in the same time in a surface mount equipment, the total output will increase and will improve productivity. In this paper, we propose a method to reduce the gantry drive time from the suction to the mounting of the component to improve the productivity of the surface mount equipment. The method was to find a way to get the maximum velocity in front of the camera during the vision inspection. In this paper, we have developed a stop-motion, fly1-motion, and fly2-motion drive time calculation algorithms for vision inspection and calculated the driving time of 3 methods and compared them. As a result, the fly1-motion method shortened the time by 13% and the fly2-motion method shortened the time by 18% than the stop-motion method.

표면 실장 장비에서 같은 시간 동안 더 많은 부품을 실장한다면, 이는 전체 생산량이 증가하며, 생산성 향상을 가져올 것이다. 본 논문에서는 표면 실장 장비의 생산성 향상을 위해 부품의 흡착에서 실장까지의 겐트리 구동 시간을 줄일 수 있는 방법을 제시하였다. 그 방법은 비전 검사 시 카메라 앞에서 최대의 속도를 낼 수 있는 방법을 찾는 것이었다. 이를 위해 본 논문에서는 비전 검사 시 stop-motion방식, fly1-motion방식 그리고 fly2-motion방식의 구동 시간 계산 알고리즘을 개발하였으며, 3가지 방식의 구동 시간을 계산하여 비교해보았다. 그 결과 stop-motion방식보다 fly1-motion방식이 13%, fly2-motion방식이 18%의 시간 단축을 할 수 있었다.

Keywords

JBCRJM_2018_v7n11_405_f0001.png 이미지

Fig. 1. The Moving Path from (-300, -150) to (4, 200)

JBCRJM_2018_v7n11_405_f0002.png 이미지

Fig. 2. Velocity Graph

JBCRJM_2018_v7n11_405_f0003.png 이미지

Fig. 3. Modified Velocity Graph

JBCRJM_2018_v7n11_405_f0004.png 이미지

Fig. 4. Trajectory of Stop-Motion

JBCRJM_2018_v7n11_405_f0005.png 이미지

Fig. 5. ‘acceleration-Constant Velocity-Deceleration’ Graph

JBCRJM_2018_v7n11_405_f0006.png 이미지

Fig. 6. Time Calculation Graph and Algorithm

JBCRJM_2018_v7n11_405_f0007.png 이미지

Fig. 7. Time Calculation Graph and Algorithm

JBCRJM_2018_v7n11_405_f0008.png 이미지

Fig. 8. Velocity Graph with Modified h Value

JBCRJM_2018_v7n11_405_f0009.png 이미지

Fig. 9. Velocity Graph of Fly1-Motion

JBCRJM_2018_v7n11_405_f0010.png 이미지

Fig. 10. Velocity Graph of the (S-C) and Verification Graph

JBCRJM_2018_v7n11_405_f0011.png 이미지

Fig. 11. Y-axis Velocity Graph

JBCRJM_2018_v7n11_405_f0012.png 이미지

Fig. 12. Final Graph

JBCRJM_2018_v7n11_405_f0013.png 이미지

Fig. 13. Velocity graph of Fly2-Motion

Table 1. Given Condition

JBCRJM_2018_v7n11_405_t0001.png 이미지

Table 2. Comparison of Three Methods

JBCRJM_2018_v7n11_405_t0002.png 이미지

References

  1. W. Wang, P. C. Nelson, and T.M. Tirpak, "Optimization of high-speed multistation SMT placement machine using evolutionary algorithms," IEEE Trans. on Electronics Packaging Manufacturing, Vol.22, No.2, Apr. 1999.
  2. Y. Crama, A. W. J. Kolen, A. G. Oerlemans, and F. C. R Spieksma, "Throughput rate optimization in the automated assembly of PCB," Annals of Operations Research, Vol.26, No.1, pp.455-480, 1990.
  3. P. J. Egbelu, C. T. Wu, and R. Pilgaonkar, "Robotic assembly of PCB with component feeder location consideration," Producation Planning and Control, Vol.7, No.2, pp.195-197, 1999.
  4. F. F. Cappo, and J. C. Miliken, "MLC Surface Mount Technology," Surface Mount, Vol.2, pp.99-104, 1999.
  5. A. Sarkhel, B.-T. Ma, and W. E. Bernier, "Solder Bumping Process for Surface Mount Assembly of Ultra Fine Pitch Components," New and Critical Technologies for SMT, Vol.2, pp.17-22, 1995.
  6. T. H. Treichel, "A Reliability Examination of Lead-free Quartz Crystal Products Using Surface Mount Technology Engineered for Harsh Environments," SMTA News and Journal of Surface Mount Technology, Vol.18, No.3, pp.39-47, 2005.