DOI QR코드

DOI QR Code

풍화토 정착 인장형 앵커에서 주면전단거동분석을 위한 다중선형모델 적용 해석기법의 제안

Suggestion of Analytical Technique Applying Multi-Linear Models for Analysis of Skin Shear Behavior of Tension-Type Ground Anchors in Weathered Soil

  • 정현식 (라온구조안전기술 기업부설연구소) ;
  • 이영생 (경기대학교 토목공학과)
  • 투고 : 2018.04.10
  • 심사 : 2018.10.29
  • 발행 : 2018.11.30

초록

지반앵커의 정착장에 작용하는 정착응력 분포 특성은 매우 비선형적이며 공학적인 메카니즘이 비교적 복잡하기 때문에 다양한 지반조건 및 비선형적 주면전단거동을 구체적으로 모사하여 지반앵커를 설계하는데 어려움이 크다. 이런 한계로 인하여 현재 대부분의 관련 설계 기준서에는 편의상 정착장 전장에 걸쳐 일정한 주면전단응력분포를 가정하여 설계에 적용하고 있다. 따라서 본 연구에서는 인장형 앵커의 인발거동 특성을 분석하기 위하여 풍화토 지반조건을 대상으로 현장인발시험을 수행하였으며 이를 토대로 앵커 정착장의 주면전단거동을 정립하고, 정착장 거동특성을 비교적 간편하게 예측하기 위한 다중선형모델 및 이를 적용한 해석적 기법을 제안하였다. 현장시험결과와 해석적 결과가 상호 유사하게 나타남에 따라 본 연구에서 제시된 다중선형모델 및 이를 이용한 해석적 기법의 적용성 및 유효성을 확인할 수 있었다. 정착장 주면전단거동의 경우 최대인발하중 보다 작은 하중조건에서는 정착장 시작점에서 최대전단응력이 분포하게 되나 최대인발하중이 발생한 이후부터는 정착장 시작점에서 전단응력이 가장 작게 분포하고, 정착장 시작점으로부터 일정거리 이격된 지점에서 최대전단응력이 발생함을 확인하였다.

The characteristics of the skin shear stress distribution for the fixed length of the ground anchor are extremely nonlinear and the engineering mechanisms are complex relatively. So it is difficult to design the anchors simulating the actual behavior by considering various soil conditions and nonlinear behavior. Due to these limits, constant skin shear stress distributions for the whole fixed length of the ground anchor are usually assumed in the design for the sake of convenience. In this study, to assess the pull-out behavior of the tension-type ground anchors, the in-situ pull-out tests in weathered-soil conditions were carried out. Based on the test results, the skin shear behaviors for the fixed length of tension-type ground anchors were established and the multi-linear slip shear model predicting this behavior and an analytical technique applying this model were proposed. From the similarity between the results of the in-situ pull-out tests and those of the analytical technique, the applicability and availability of the multi-linear slip shear model and the proposed analytical technique were verified. The maximum shear stress was developed at the start point of the fixed length acting with the smaller load than the maximum pull-out load but the minimum shear stress was developed at the start point of the fixed length and the maximum shear stress was developed at the point apart from the start point of the fixed length after the maximum pull-out load.

키워드

GJBGC4_2018_v34n11_5_f0001.png 이미지

Fig. 1. Schematic diagram tension-type ground anchors

GJBGC4_2018_v34n11_5_f0002.png 이미지

Fig. 2. Typical multi-linear slip and shear stress relations of fixed length (Benmokrane et al., 1995)

GJBGC4_2018_v34n11_5_f0003.png 이미지

Fig. 3. Equilibrium relationship of forces at each point of the fixed length

GJBGC4_2018_v34n11_5_f0004.png 이미지

Fig. 4. Linear elastic behavior condition to grout-ground Interface

GJBGC4_2018_v34n11_5_f0005.png 이미지

Fig. 5. Linear elastic-softening behavior condition to grout-ground Interface

GJBGC4_2018_v34n11_5_f0006.png 이미지

Fig. 6. Linear elastic-softening-residual behavior condition to grout-ground Interface

GJBGC4_2018_v34n11_5_f0007.png 이미지

Fig. 7. Cross-section condition of strand tendon and grout

GJBGC4_2018_v34n11_5_f0008.png 이미지

Fig. 8. Pullout test of tension type ground anchors

GJBGC4_2018_v34n11_5_f0009.png 이미지

Fig. 9. Compressive strength of grout samples by curing time

GJBGC4_2018_v34n11_5_f0010.png 이미지

Fig. 10. Scheme of ground condition and measurement system installation

GJBGC4_2018_v34n11_5_f0011.png 이미지

Fig. 11. Plotting of performance test results : FT-1(S) and FT-2(N)

GJBGC4_2018_v34n11_5_f0012.png 이미지

Fig. 12. Plotting of elastic displacement and slip : FT-1(S) and FT-2(N)

GJBGC4_2018_v34n11_5_f0013.png 이미지

Fig. 13. Flowchart for the implementation of the skin shear stress-slip model using pullout test results

GJBGC4_2018_v34n11_5_f0014.png 이미지

Fig. 14. Slip-shear stress model of FT-1(S) and FT-2(N) anchors

GJBGC4_2018_v34n11_5_f0015.png 이미지

Fig. 15. Comparison between the experimental data and the analytical approach of P-δs relationships : FT-1(S) & FT-2(N)

GJBGC4_2018_v34n11_5_f0016.png 이미지

Fig. 16. Comparison between the experimental data and the analytical approach of axial load distribution : FT-1(S)

GJBGC4_2018_v34n11_5_f0017.png 이미지

Fig. 17. Comparison between the experimental data and the analytical approach of skin shear stress distribution : FT-1(S)

Table 1. Nominal dimension and physical properties of strand tendon for pull-out test

GJBGC4_2018_v34n11_5_t0001.png 이미지

Table 2. Dimension of test anchors for pull-out test

GJBGC4_2018_v34n11_5_t0002.png 이미지

Table 3. Values for set up of multi-linear model with FT-1(S) and FT-2(N) test results

GJBGC4_2018_v34n11_5_t0003.png 이미지

참고문헌

  1. Barley, A. D. (1995), "Anchors in Theory and Practice", International Symposium on Anchors in Theory and Practice, pp.7-18.
  2. Benmokrane, B., Chennouf, A., and Mitri, H. S. (1995), "Laboratory Evaluation of Cement-Based Grout and Grout Rock Anchors", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol.32, No.7, pp.633-642. https://doi.org/10.1016/0148-9062(95)00021-8
  3. British standard, BS 8081 (1989), "British Standard Code of practice for Ground anchorages", pp.5-63.
  4. British standard, BS 1537 (2000), "Execution of special geotechnical work-Ground anchors", pp.30-35.
  5. Coates, D. F. and Y. S. Yu. (1970), "Three Dimensional Stress Distributions Around a Cylindrical Hole and Anchor", Proc. 2nd Int. Conf. on Rock Mech., Belgrade, pp.175-182.
  6. Farmer, I. J., (1975), "Stress Distribution along a Resin Grouted Rock Anchor", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol.12, pp.347-351. https://doi.org/10.1016/0148-9062(75)90168-0
  7. Federal Highway Administration, FHWA (1999), Ground Anchors and Anchored Systems, pp.4-12, 46-77.
  8. GEOSPEC-1 (1989), Model Specification for Prestressed Ground Anchors, Geotechnical control office, Civil Engineering Services Department Hong Kong, pp.46-65.
  9. Hong, W. P., Yun, J. M., and Song, Y. S. (2004), "Lateral Earth Pressure Acting on Anchored Retention Walls Installed in Cut Slope", Journal of the Korean Society of Civil Engineers, Vol.24, No.2C, pp.125-133.
  10. Ivering, J. W. (1981), "Development in the Concept of Compression Tube Anchors", Ground Engineering, 14, pp.31-34.
  11. Jeong, H. S., Han, K. S., and Lee, Y. S. (2017), "Numerical Study on the Skin Friction Characteristics of Tension Type Ground Anchors in Weathered Soil", Journal of the Korean Geotechnical Society, Vol.33, No.1, pp.39-56. https://doi.org/10.7843/KGS.2017.33.1.39
  12. Kame, G. S. and Dewaiker, D. M. (2012), "Pullout Capacity of a Vertical Plate Anchor Embedded in Cohesion-less Soil", Earth Science Research, Vol.1, No.1, pp.27-56.
  13. Kim, J. H. and Jeong, H. S. (2014), "Characteristics of Multi Load Transfer Ground Anchor System", Journal of Korean Tunnelling and Underground Space Association, Vol.16, No.01, pp.25-50. https://doi.org/10.9711/KTAJ.2014.16.1.025
  14. Kim, J. H. and Jeong, H. S. (2016), Ground Anchor technique for executives, first edition, CIR, pp.17-52. 105-132.
  15. Kim, N. K. (2001), "Load Transfer of Tension and Compression Anchors in Weathered Soil", Journal of the Korean Geotechnical Society, Vol.17, No.3, pp.59-68.
  16. Kim, Y. M., Cho, K. W., Kim, W. K., and Kim, H. M. (2004), "Load Distribution and Pullout Capacity of Compression Anchors", Journal of the Korean Society of Civil Engineers, pp.4219-4224.
  17. Lee, J. U. (2014), Effect of Multi-Compression Type Anchor with the Installation Space of Compression Tube, Ph D Thesis, Daejin University, pp.75-85.
  18. Littlejohn, G. S. (1980), "Design Estimation of Ultimate Load Holding Capacity of Ground Anchors", Ground Engineering Publ., Essex, England. pp.25-39.
  19. Ministry of Land, Transport and Maritime Affairs of Korea, Manual for Design, construction and maintenance of ground anchors, 2009, pp.86-101.
  20. Martirosyan, A.Z., Martirosyan, Z.G., and Avanesov, A.V. (2016), "Estimation of Residual Stress at the Interface between Ground Anchor and Surrounding Soil under Pressure Grouting", 15th Russian- Slovak Seminar-Theoretical Foundation of Civil Engineering, pp. 754-760.
  21. Mastrantuono, C. and A. Tomiolo. (1977), "First Application of a Totally Protected Anchorage", proc. 9th Int. Conf. on Soil Mech. and Found. Eng., Tokyo. Speciality Session, pp.107-112.
  22. Mecsi, J. (1997), "Some Practical and Theoretical Aspects of Grouted Soil Anchors. Institution of Civil Engineers Conference on Ground Anchors and Anchored Structures, London, March 1997, pp.119-130.
  23. Muller, H. (1966), "Erfahnungenmit Verankerungen System BBRV in Fels-und Lock-ergesteinen", Schweizerische Bauzeitung, 84(4), 77-82.
  24. National Emergency Management Agency, NEMA (2011), Development of slope reinforcing and monitoring system using FBG sensor embedded anchor, Development of natural disaster mitigation technologies, Report No.2010-37, pp.156-61.
  25. Ostermayer, H. (1974), "Construction, Carrying behavior and Creep Characteristics of Ground Anchors", ICE Conf. on Diaphargm Walls and Anchorages, London, pp.141-151.
  26. Ostermayer, H. and Scheele, H. (1977), "Research on Ground Anchors in Non-Cohesive Soils", Revue Francaise de Geotechnique, Vol.3, pp.92-97
  27. Post-Tensioning Institute, PTI (2004), Recommendations for Prestressed Rock and Soil Anchors, pp.35-50.
  28. Sung, H. J. (2012), Tension Force Monitoring of Ground Anchor Using Fiber Optic Sensors Embedded Tendon, Ph D Thesis, Chonnam National University, pp.69-144.
  29. Vukotic, G. and Gonzalez G. J. (2013), "The Influence of Bond Stress Distribution on Ground Anchor Fixed Length Design. Field Results and Proposal for Design Methodology", Proceddings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, pp.2119-2122.
  30. Xanthakos, P. P. (1991), Ground Anchors and Anchored Structures, A Wiley-Interscience Publication, pp.123-195.