DOI QR코드

DOI QR Code

Converting Ieodo Ocean Research Station Wind Speed Observations to Reference Height Data for Real-Time Operational Use

이어도 해양과학기지 풍속 자료의 실시간 운용을 위한 기준 고도 변환 과정

  • BYUN, DO-SEONG (Ocean Research Division, Korea Hydrographic and Oceanographic Agency) ;
  • KIM, HYOWON (Ocean Research Division, Korea Hydrographic and Oceanographic Agency) ;
  • LEE, JOOYOUNG (Ocean Research Division, Korea Hydrographic and Oceanographic Agency) ;
  • LEE, EUNIL (Ocean Research Division, Korea Hydrographic and Oceanographic Agency) ;
  • PARK, KYUNG-AE (Department of Earth Science Education/Research Institute of Oceanography, Seoul National University) ;
  • WOO, HYE-JIN (Department of Science Education, Seoul National University)
  • 변도성 (국립해양조사원 해양과학조사연구실) ;
  • 김효원 (국립해양조사원 해양과학조사연구실) ;
  • 이주영 (국립해양조사원 해양과학조사연구실) ;
  • 이은일 (국립해양조사원 해양과학조사연구실) ;
  • 박경애 (서울대학교 지구과학교육과/해양연구소) ;
  • 우혜진 (서울대학교 과학교육과)
  • Received : 2018.05.21
  • Accepted : 2018.09.20
  • Published : 2018.11.30

Abstract

Most operational uses of wind speed data require measurements at, or estimates generated for, the reference height of 10 m above mean sea level (AMSL). On the Ieodo Ocean Research Station (IORS), wind speed is measured by instruments installed on the lighthouse tower of the roof deck at 42.3 m AMSL. This preliminary study indicates how these data can best be converted into synthetic 10 m wind speed data for operational uses via the Korea Hydrographic and Oceanographic Agency (KHOA) website. We tested three well-known conventional empirical neutral wind profile formulas (a power law (PL); a drag coefficient based logarithmic law (DCLL); and a roughness height based logarithmic law (RHLL)), and compared their results to those generated using a well-known, highly tested and validated logarithmic model (LMS) with a stability function (${\psi}_{\nu}$), to assess the potential use of each method for accurately synthesizing reference level wind speeds. From these experiments, we conclude that the reliable LMS technique and the RHLL technique are both useful for generating reference wind speed data from IORS observations, since these methods produced very similar results: comparisons between the RHLL and the LMS results showed relatively small bias values ($-0.001m\;s^{-1}$) and Root Mean Square Deviations (RMSD, $0.122m\;s^{-1}$). We also compared the synthetic wind speed data generated using each of the four neutral wind profile formulas under examination with Advanced SCATterometer (ASCAT) data. Comparisons revealed that the 'LMS without ${\psi}_{\nu}^{\prime}$ produced the best results, with only $0.191m\;s^{-1}$ of bias and $1.111m\;s^{-1}$ of RMSD. As well as comparing these four different approaches, we also explored potential refinements that could be applied within or through each approach. Firstly, we tested the effect of tidal variations in sea level height on wind speed calculations, through comparison of results generated with and without the adjustment of sea level heights for tidal effects. Tidal adjustment of the sea levels used in reference wind speed calculations resulted in remarkably small bias (<$0.0001m\;s^{-1}$) and RMSD (<$0.012m\;s^{-1}$) values when compared to calculations performed without adjustment, indicating that this tidal effect can be ignored for the purposes of IORS reference wind speed estimates. We also estimated surface roughness heights ($z_0$) based on RHLL and LMS calculations in order to explore the best parameterization of this factor, with results leading to our recommendation of a new $z_0$ parameterization derived from observed wind speed data. Lastly, we suggest the necessity of including a suitable, experimentally derived, surface drag coefficient and $z_0$ formulas within conventional wind profile formulas for situations characterized by strong wind (${\geq}33m\;s^{-1}$) conditions, since without this inclusion the wind adjustment approaches used in this study are only optimal for wind speeds ${\leq}25m\;s^{-1}$.

운용용으로 사용되는 대부분의 풍속자료는 10 m 기준 고도에서 측정 또는 생산된 자료이다. 이 연구는 이어도 해양과학기지 42.3 m 고도의 옥상 등대에서 측정 중인 풍속을 기준 고도의 풍속으로 변환시켜 국립해양조사원 누리집을 통해 실시간으로 제공하기 위한 사전 연구이다. 이를 위해 2015년에 이어도 기지에서 관측한 풍속을 대표적인 네 종류의 풍속 변환식 - 멱법칙식, 두 종류의 중립벽 로그법칙식(항력계수형, 거칠기 높이형), 대기 안정도 효과를 고려한 벽 로그법칙모델(안정도 고려 거칠기 높이형) -에 적용하였다. 관측 바람을 평가하는데 많이 사용되는 '안정도 고려 거칠기 높이형' 벽 로그법칙모델의 결과와 나머지 풍속 변환식 결과들을 서로 비교하였다. 그 결과 '거칠기 높이형' 벽 로그법칙식과 '안정도 고려 거칠기 높이형' 벽 로그법칙모델 간 편향과 평균 제곱근 편차는 각각 $-0.001m\;s^{-1}$$0.122m\;s^{-1}$로 가장 낮아 실시간 현업 운용 측면에서 상호 보완적으로 이 두 변환식을 함께 사용하는 것이 바람직하다는 결론을 도출하였다. 또한 이어도 해역에서 조석에 의한 풍속 관측 고도 변화가 풍속 변환에 미치는 영향을 분석하였다. 이들 변환식에 대한 조석 효과 고려 전후에 대한 비교 실험 결과, 편향과 평균 제곱근 편차는 각각 <$0.0001m\;s^{-1}$와 <$0.012m\;s^{-1}$로 그 영향은 미미하였다. 대기 표면 거칠기 높이를 사용하는 '거칠기 높이형' 벽 로그법칙식과 '안정도 고려 거칠기 높이형' 벽 로그 법칙모델을 이용하여 간편 풍속 변환식의 필수 입력값인 표면 거칠기 높이 값의 적절성에 관해 논의하였으며, 풍속 변환 정확도를 향상시킬 수 있는 표면 거칠기 높이 계산식을 제시하였다. 또한 인공위성 산란계(ASCAT) 풍속자료와 네 종류의 중립 연직 풍속 변환식들의 결과를 비교하여 이들 중 '안정도 고려 거칠기 높이형' 벽 로그법칙모델에서 안정도 항을 뺀 풍속 변환 모델의 정확도가 더 낫다는 결과를 제시하였다. 끝으로 이들 종래 $25m\;s^{-1}$ 이하 풍속에 최적화된 풍속 변환식들로부터 바람 항력계수를 산정 분석하여 강풍(${\geq}33m\;s^{-1}$) 환경에서도 적합한 풍속 변환식으로 개선 필요성에 관해 논의하였다.

Keywords

GHOHBG_2018_v23n4_153_f0001.png 이미지

Fig. 1. (a) Location (●) of the Ieodo Ocean Research Station (IORS) and (b) its structure and each deck height from the elevation level (EL).

GHOHBG_2018_v23n4_153_f0002.png 이미지

Fig. 2. Weather monitoring equipment, measuring winds (①), humidity and air temperatures (② and ③), and barometric pressure (④), and the heights at which they were installed above the roof deck (33.5 m from mean sea level) of the Ieodo Ocean Research Station before (a) and after (b) the passage of Typhoon Muifa on August 7, 2011.

GHOHBG_2018_v23n4_153_f0003.png 이미지

Fig. 3. Variation in kinematic viscosity (v) with variation in air temperature.

GHOHBG_2018_v23n4_153_f0004.png 이미지

Fig. 4. Time series plots of differences in (a) adjusted 10-m wind speeds between $U_{10}^{LKBns}$ and $U_{10}^{LKBs}$ and in (b) temperatures between sea surface (Ts) and air (T) measured at the Ieodo Research Station in 2015 and (c) time series plot of values of atmospheric stability function (Ψu) calculated from Eq. (12).

GHOHBG_2018_v23n4_153_f0005.png 이미지

Fig. 5. Comparisons between converted 10-m wind speed values from $U_{10}^{LKBs}$ and converted values from each different formula (i.e., $U_{10}^{PW}$ , $U_{10}^{LP83}$ , $U_{10}^{S88}$ , and $U_{10}^{S88}$(v(T)), using 1-hr interval wind records from the roof deck at 42.3 m above the mean sea level of the Ieodo Ocean Research Station in 2015.

GHOHBG_2018_v23n4_153_f0006.png 이미지

Fig. 6. Variations in the surface roughness length (z0) consisting of the aerodynamic roughness length due mainly to the shorter surface waves (zc) and the aerodynamic roughness length for a smooth surface (zs), which are calculated from Eq. (8) with α = 0.001, v = 1.5 × 10-5 m2s-1 and g = 9.8 m2s-1. .

GHOHBG_2018_v23n4_153_f0007.png 이미지

Fig. 7. Surface roughness lengths (z0) estimated from (a) $U_{10}^{S88}$ (Eq. (7)) and (b) $U_{10}^{LKBs}$ (Eq. (12)) and their fits (thick black lines) of wind speed measurements (Uz) to the z0. Blue (A) and red (B) dots in panel (b) denote values of z0 under conditions of Ψu and Ψu > 0, respectively.

GHOHBG_2018_v23n4_153_f0008.png 이미지

Fig. 8. Wind speed measurements (Uz) vs difference between Uz and 10-m wind speeds (U10) adjusted from $U_{10}^{LKBs}$ (Eq. (12)) for the cases of Ψu > 0 (red dots) and Ψu < 0 (blue dots).

GHOHBG_2018_v23n4_153_f0009.png 이미지

Fig. 9. Comparisons between $U_{10}^{ASCAT}$ and converted 10-m wind speed values from each different formula ( $U_{10}^{PW}$ , $U_{10}^{LP83}$ , $U_{10}^{S88}$ and $U_{10}^{LKBns}$ ), using 1-hr interval wind records measured from the roof deck at 42.3 m above the mean sea level of the Ieodo Ocean Research Station in 2015.

GHOHBG_2018_v23n4_153_f0010.png 이미지

Fig. 10. (a) Drag coefficients calculated from $C_{d10}^{V88}$ (Eq. 4), $C_{d10}^{Z12}$ (Eq. 22) and $C_{d10}^{S88}$ (Eq. 10) under the wind speeds (Uz) of ≤ 60ms-1 and (b) difference of 10-m wind speeds adjusted from $U_{10}^{LP83NW}$ (using $C_{d10}^{Z12}$) and $U_{10}^{LP83}$ (using $C_{d10}^{V83}$) using wind speeds (Uz) of ≤ 60ms-1 with an interval of 0.1ms-1.

Table 1. Meteorological sensors (wind, humidity, temperature and barometric pressure) installed above the roof deck of the Ieodo Ocean Research Station

GHOHBG_2018_v23n4_153_t0001.png 이미지

Table 2. Wind profile formulas used for adjusting sea winds (Uz) measured above the roof deck (z = 42.3 m) of the Ieodo Ocean Research Station to a 10-m reference height (z10 = 10 m)

GHOHBG_2018_v23n4_153_t0002.png 이미지

Table 3. Sensitivity analysis of the LKB with respect to the input parameters using meteorological and oceanographic records measured at the Ieodo Ocean Research Station in 2015

GHOHBG_2018_v23n4_153_t0003.png 이미지

Table 4. Comparisons of adjusted 10-m wind speeds between $U_{10}^{LKBs}$ and $U_{10}^{PW}$ ($U_{10}^{LP83}$ , $U_{10}^{S88}$ , $U_{10}^{S88}$ (v(T))) according to observed wind speed ranges

GHOHBG_2018_v23n4_153_t0004.png 이미지

Table 5. The five main tidal harmonic constants estimated from harmonic analysis of 2015 yearlong sea level observation records at the Ieodo Ocean Research Station

GHOHBG_2018_v23n4_153_t0005.png 이미지

Table 6. Sensitivity experiments of four vertical wind conversion equations ($U_{10}^{PW}$ , $U_{10}^{LP83}$, $U_{10}^{S88}$ and $U_{10}^{LKBs}$ ) on the effect of variation in sea-level heights due to tides, using meteorological and oceanographic records measured at the Ieodo Ocean Research Station in 2015

GHOHBG_2018_v23n4_153_t0006.png 이미지

Table 7. Four sensitivity experiments on use of different surface roughness lengths (z0) in Eq. (7), Eq. (12) and Eq. (18) using meteorological and oceanographic records measured at the Ieodo Ocean Research Station in 2015

GHOHBG_2018_v23n4_153_t0007.png 이미지

Table 8. Maximum wind speeds observed at the Ieodo Ocean Research Station from 2004 and 2017 and their count number of occurrence

GHOHBG_2018_v23n4_153_t0008.png 이미지

References

  1. Andreas, E.L. 1989. Thermal and size evolution of sea spray droplets. Office of Naval Research, CRREL Report pp. 89-11.
  2. Bentamy, A., D. Croize-Fillon and C. Perigaud, 2008. Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations. Ocean Sci., 4: 265-274. https://doi.org/10.5194/os-4-265-2008
  3. Choi, D.-Y., H.-J. Woo, K.-A. Park, D.-S. Byun and E.I. Lee, 2018. Validation of Sea Surface Wind Speeds from Satellite Altimeters and Relation to Sea State Bias - Focus on Wind Measurements at Ieodo, Marado, Oeyeondo Statio. J. Korean Earth Sci. Soc., 39: 139-153. https://doi.org/10.5467/JKESS.2018.39.2.139
  4. Chou, K.-H., C.-C. Wu and S.-Z. Lin, 2013. Assessment of the ASCAT wind error characteristics by global dropwindsonde observations. J. Geophys. Res., 118: 9011-9021.
  5. Donelan, M.A., 2018. On the decrease of the oceanic drag coefficient in high winds. J. Geophys. Res., 123: 1485-1501. https://doi.org/10.1002/2017JC013394
  6. Fairall, C.W., E.F. Bradley, D.P. Rogers, J.B. Edson and G.S. Young, 1996. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101: 3747-3764. https://doi.org/10.1029/95JC03205
  7. Hus, S.A., E.A. Meindl and D.B. Gilhousen, 1994. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. Journal of Applied Meteorology, 33: 757-765. https://doi.org/10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2
  8. Garratt, J.R., 1977. Review of drag coefficients over oceans and continents. Monthly Weather Review, 105: 915-929. https://doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2
  9. Kang, K.-M., D.-J. Kim, J.-H. Hwang, C.H. Choi, S.H. Nam, S.J. Kim, Y.-K. Cho, D.-S. Byun and J.Y. Lee, 2017. Establishment of thermal infrared observation system on Ieodo Ocean Research Station for time-series sea surface temperature extraction. J. Korean Soc. Oceanogr., 22: 57-68.
  10. Large, W.G. and S. Pond, 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11: 324-336. https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
  11. Large, W.G., J. Morzel and G.B. Crawford, 1995. Accounting for surface wave distortion of the marine wind profile in low-level ocean storms wind measurements. Journal of Physical Oceanography, 25: 2959-2971. https://doi.org/10.1175/1520-0485(1995)025<2959:AFSWDO>2.0.CO;2
  12. Liu, W.T., K.B. Katsaros and J.A. Businger, 1979. Bulk parameterization of air-sea exchange of heat and water vapor including the molecular constraints at the interface. Journal of the Atmospheric Sciences, 36: 1722-1735. https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2
  13. Liu, W.T. and W. Tang, 1996. Equivalent neutral wind. JPL Publication, Pasadena, CA, pp. 96-17.
  14. Moon, I.-J., J.-S. Shim, D.Y. Lee, J.H. Lee, I.-K. Min and K.C. Lim, 2010. Typhoon researches using the Ieodo Ocean Research Station: Part I. Importance and present status of typhoon observation. Atmosphere, Korean Meteorological Society, 20: 247-260.
  15. Oh, H.-M. and K.-J. Ha, 2005. Analysis of marine meteorological characteristics at Ieodo Ocean Research Station from 2003 to 2004. Atmosphere, Korean Meteorological Society, 41: 671-680.
  16. Oh, H., K.-J. Ha and J.-S. Shim, 2014. Analysis for onset of Changma using Ieodo Ocean Research Station Data. Atmosphere, Korean Meteorological Society, 24: 189-196.
  17. Oey, L.Y. and P. Chen, 1992. A model simulation of circulation in the Northeast Atlantic Shelves and Seas. Journal of Geophysical Research, 97: 20087-20115. https://doi.org/10.1029/92JC01990
  18. Pawlowicz, R., B. Beardsley and S. Lentz, 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci, 28: 929-937, doi:10.1016/S0098-3004(02)00013-4.
  19. Peng, S. and Y. Li, 2015. A parabolic model of drag coefficient for storm surge simulation in the South China Sea. Sci. Rep., 5: 15496, doi: 10.1038/srep15496.
  20. Pinson, P. and R. Hagedorn, 2012. Verification of the ECMWF ensemble forecasts of wind speed against analyses and observations. Meteorological Applications, 19: 484-500. https://doi.org/10.1002/met.283
  21. Powell, M.D., P.J. Vickery and T.A. Reinhold, 2013. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422: 279-283.
  22. Powell, M.D., 2008. High Wind Drag Coefficient and Sea Surface Roughness in Shallow Water, Final Report to the Joint Hurricane Testbed. 24 pp.
  23. Sile, T., L. Bekere, D. Cepite-Frisfelde, J. Sennikovs and U. Bethers, 2014. Verification of Numerical Weather Prediction Model Results for Energy Applications in Latvia. Energy Procedia, 59: 213-220. https://doi.org/10.1016/j.egypro.2014.10.369
  24. Singh, P., A. Parekh and R. Attada, 2013. Comparison of a simple logarithmic and equivalent neutral wind approaches for converting buoy-measured wind speed to the standard height: special emphasis to North Indian Ocean, 111: 455-463.
  25. Shim, J.-S., B.-C. Oh and I.-S. Chun, 2003. Influences of Ieodo Ocean Research Station on the ambient wind field. Journal of Korean Society of Coastal and Ocean Engineers, 25: 707-718.
  26. Smith, S.D. 1988. Coefficient for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. Journal of Geophysical Research, 93: 15468-15472.
  27. Smith, S.D. and F.W. Dobson, 1984. The heat budget at ocean weather station Brave. Atmosphere-Ocean, 22: 1-22. https://doi.org/10.1080/07055900.1984.9649181
  28. Spera, D.A. and T.R. Richards, 1979. "Modified power low equations for vertical wind profiles," in Proceedings of the Conference and Workshop on Wind Energy Characteristics and Wind Energy Siting, Portland, Ore, USA, 19-21 June, 1979, pp. 1-10.
  29. Wieringa, J., A.G. Davenport, C.S.B. Grimmond and T.R. Oke, 2001. New revision of Davenport roughness classification. Proceedings of the 3rd European and African Conference on Wind Engineering, Eindhoven, The Netherlands, 2-6 July, 2001, pp. 285-292.
  30. WMO (World Meteorological Organization), 2008. Guidelines for converting between various wind averaging periods in tropical cyclone conditions. Appendix II, pp. 6-10.
  31. Woo, H.-J., K.-A. Park, D.-S. Byun, J.Y. Lee and E.I. Lee, 2018. Characteristics of the Differences between Significant Wave Height at Ieodo Ocean Research Station and Satellite Altimeter-measured Data over a Decade (2004-2016), J. Korean Soc. Oceanogr., 23(1): 1-19.
  32. Zijlema, M., G.P. van Vledder and L.H. holthuijsen, 2012. Bottom friction and wind drag for wave models. Coast. Eng., 65: 19-26. https://doi.org/10.1016/j.coastaleng.2012.03.002