DOI QR코드

DOI QR Code

Prediction of Charge/Discharge Behaviors and Aging of the VRLA Battery

VRLA 배터리의 충/방전 거동과 노화 예측 모델링

  • 이명규 (아주대학교 에너지시스템학부) ;
  • 조재성 (아주대학교 에너지시스템학부) ;
  • 신치범 (아주대학교 에너지시스템학부) ;
  • 류기선 (현대자동차 연구개발본부)
  • Received : 2018.08.27
  • Accepted : 2018.09.12
  • Published : 2018.12.01

Abstract

In this work, Mathematical modeling was carried-out to predict the charging/discharging characteristics of VRLA (Valve regulated lead acid) battery, which is mainly used as a 12 V lead acid battery for automobile. And It also carried-out how it's characteristics would be changed due to aging. A mathematical modeling technique, which has been mainly used to predict behavior of Lithium-ion batteries, is applied to commercial 70 Ah VRLA battery. The modeling result of Voltage was compared with result of constant current charge / discharge test. From this, it can be seen that the NTGK model can be applied to the lead acid battery with high accuracy. It was also found that the aging of lead-acid battery can be predicted by using it.

본 연구에서는 차량용 12 V 납축전지로 주로 사용되는 VRLA (Valve regulated lead acid) 배터리의 충/방전 특성과 노화에 따른 이의 변화를 수학적으로 모델링하였다. 기존에 리튬 이온 배터리의 거동 예측에 주로 이용되어 왔던 수학적 모델링 기법을 상용 70 Ah VRLA 배터리에 적용하였다. 정전류 충/방전에 따른 전압의 변화를 모델링 결과와 비교하였다. 비교 결과로부터 사용된 수학적 모델이 납축전지에도 높은 정확도로 적용될 수 있음을 알 수 있었다. 또한 이를 이용하여 납축전지의 노화를 예측할 수 있음을 확인하였다.

Keywords

HHGHHL_2018_v56n6_779_f0001.png 이미지

Fig. 1. Current flow and boundary for each electrode.

HHGHHL_2018_v56n6_779_f0002.png 이미지

Fig. 2. Comparison between experimental and modeling discharge curves at discharge rates of 0.05 C, 0.10 C, 0.20 C, 0.50 C, 1.00 C.

HHGHHL_2018_v56n6_779_f0003.png 이미지

Fig. 3. Comparison between experimental and modeling charge curves at charge rates of 0.05 C, 0.10 C, 0.20 C, 0.50 C, 1.00 C.

HHGHHL_2018_v56n6_779_f0004.png 이미지

Fig. 4. Comparison between experimental and modeling discharged capacity at discharge rate of 0.05 C for 17.5% DoD test.

HHGHHL_2018_v56n6_779_f0005.png 이미지

Fig. 5. Relative error discharged capacity at discharge rate of 0.05 C for 17.5% DoD test.

HHGHHL_2018_v56n6_779_f0006.png 이미지

Fig. 6. Comparison between experimental and modeling Voltage for 17.5% DoD test.

HHGHHL_2018_v56n6_779_f0007.png 이미지

Fig. 7. Relative error discharged capacity at 0.05 C for 17.5% DoD test.

Table 1. Parameters for 17.5% DoD test

HHGHHL_2018_v56n6_779_t0001.png 이미지

References

  1. Guo, Y., Groiss, R., Doring, H. and Garche, J., "Rate Determining Step Investigations of Oxidation Processes at the Positive Plate during Pulse Charge of Valve Regulated Lead Acid Batteries," J. Electrochem. Soc., 146(11), 3949-3957(1999). https://doi.org/10.1149/1.1392575
  2. Nguyen, T. V., White, R. E. and Gu, H, "The Effects of Separator Design on the Discharge Performance of a Starved Lead- Acid Cell," J. Electrochem. Soc., 137(10), 2998-3004(1990). https://doi.org/10.1149/1.2086148
  3. Huang, H. and Nguyen, T. V., "Two-Dimensional Transient Thermal Model for Valve-Regulated Lead-Acid Batteries under Overcharge," J. Electrochem. Soc., 144(6), 2062-2068(1997). https://doi.org/10.1149/1.1837742
  4. Bernadi, D. M. and Carpenter, M. K., "A Mathematical Model of the Oxygen Recombination Lead-Acid Cell," J. Electrochem. Soc., 142(8), 2631-2642(1995). https://doi.org/10.1149/1.2050066
  5. Newman, J. and Tiedemann, W., "Simulation of Recombinant Lead-Acid Batteries," J. Electrochem. Soc., 144(9), 3081-3091 (1997). https://doi.org/10.1149/1.1837963
  6. Kwon, K, H., Shin, C. B., Kang, T. H. and Kim, C. S., "A Twodimensional Modeling of a Lithium-polymer Battery," J. Power sources, 163, 151-157(2006). https://doi.org/10.1016/j.jpowsour.2006.03.012
  7. Kim, U. S., Yi, J., Shin, C. B., Han, T. and Park, S., "Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature," J. Power Sources, 158(5), A611-A618(2011).
  8. Tiedemann, W. and Newman, J., "Current and Potential Distribution in Lead-Acid Battery Plates," J. Electrochem. Soc., Princeton, NJ, 39-49(1979).
  9. Newman, J., Tiedemann, W., "Potential and Current Distribution in Electrochemical Cells," J. Electrochem. Soc., 140, 1961-1968(1993). https://doi.org/10.1149/1.2220746
  10. Gu, H., "Mathematical Analysis of a Zn/NiOOH Cell," J. Electrochem. Soc., 130, 1459-1464(1983). https://doi.org/10.1149/1.2120009
  11. Broussely, M., Herreyre, S., Biensan, P., Kasztejna, P., Nechev, K. and Staniewicz, R. J., "Aging Mechanism in Li-ion Cells and Calendar Life Predictions," J. Power Sources, 97, 13-21(2001).
  12. Bloom, I., Cole, B. W., Sohn, J. J., Jones, S. A., Polzin, E. G., Battaglia, V. S., Henriksen, G. L., Motloch, C., Richardson, R., Unkelhaeuser, T., Ingersoll, D. and Case, H. L., "An Accelerated Calendar and Cycle Life Study of Li-ion Cells," J. Power Sources, 101, 238-247(2001). https://doi.org/10.1016/S0378-7753(01)00783-2
  13. Ruetschi, P., "Aging Mechanisms and Service Life of Lead-acid Batteries," J. Power Sources, 127, 33-34(2004). https://doi.org/10.1016/j.jpowsour.2003.09.052
  14. Yi, J., Koo, B., Shin, C. B., Han, T. and Park, S., "Modeling the Effect of Aging on the Electrical and Thermal Behaviors of a Lithium-ion Battery During Constant Current Charge and Discharge Cycling," Computers and Chemical Engineering, 99, 31-39(2017). https://doi.org/10.1016/j.compchemeng.2017.01.006
  15. BSI., "Lead-acid Starter Batteries : Batteries for Micro-Cycle Applications," BSI, 19-20(2015).

Cited by

  1. An Optimized Preparation Procedure of Tetrabasic Lead Sulfate for Lead-Acid Batteries vol.168, pp.9, 2018, https://doi.org/10.1149/1945-7111/ac239e