Fig. 1. Current flow and boundary for each electrode.
Fig. 2. Comparison between experimental and modeling discharge curves at discharge rates of 0.05 C, 0.10 C, 0.20 C, 0.50 C, 1.00 C.
Fig. 3. Comparison between experimental and modeling charge curves at charge rates of 0.05 C, 0.10 C, 0.20 C, 0.50 C, 1.00 C.
Fig. 4. Comparison between experimental and modeling discharged capacity at discharge rate of 0.05 C for 17.5% DoD test.
Fig. 5. Relative error discharged capacity at discharge rate of 0.05 C for 17.5% DoD test.
Fig. 6. Comparison between experimental and modeling Voltage for 17.5% DoD test.
Fig. 7. Relative error discharged capacity at 0.05 C for 17.5% DoD test.
Table 1. Parameters for 17.5% DoD test
References
- Guo, Y., Groiss, R., Doring, H. and Garche, J., "Rate Determining Step Investigations of Oxidation Processes at the Positive Plate during Pulse Charge of Valve Regulated Lead Acid Batteries," J. Electrochem. Soc., 146(11), 3949-3957(1999). https://doi.org/10.1149/1.1392575
- Nguyen, T. V., White, R. E. and Gu, H, "The Effects of Separator Design on the Discharge Performance of a Starved Lead- Acid Cell," J. Electrochem. Soc., 137(10), 2998-3004(1990). https://doi.org/10.1149/1.2086148
- Huang, H. and Nguyen, T. V., "Two-Dimensional Transient Thermal Model for Valve-Regulated Lead-Acid Batteries under Overcharge," J. Electrochem. Soc., 144(6), 2062-2068(1997). https://doi.org/10.1149/1.1837742
- Bernadi, D. M. and Carpenter, M. K., "A Mathematical Model of the Oxygen Recombination Lead-Acid Cell," J. Electrochem. Soc., 142(8), 2631-2642(1995). https://doi.org/10.1149/1.2050066
- Newman, J. and Tiedemann, W., "Simulation of Recombinant Lead-Acid Batteries," J. Electrochem. Soc., 144(9), 3081-3091 (1997). https://doi.org/10.1149/1.1837963
- Kwon, K, H., Shin, C. B., Kang, T. H. and Kim, C. S., "A Twodimensional Modeling of a Lithium-polymer Battery," J. Power sources, 163, 151-157(2006). https://doi.org/10.1016/j.jpowsour.2006.03.012
- Kim, U. S., Yi, J., Shin, C. B., Han, T. and Park, S., "Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature," J. Power Sources, 158(5), A611-A618(2011).
- Tiedemann, W. and Newman, J., "Current and Potential Distribution in Lead-Acid Battery Plates," J. Electrochem. Soc., Princeton, NJ, 39-49(1979).
- Newman, J., Tiedemann, W., "Potential and Current Distribution in Electrochemical Cells," J. Electrochem. Soc., 140, 1961-1968(1993). https://doi.org/10.1149/1.2220746
- Gu, H., "Mathematical Analysis of a Zn/NiOOH Cell," J. Electrochem. Soc., 130, 1459-1464(1983). https://doi.org/10.1149/1.2120009
- Broussely, M., Herreyre, S., Biensan, P., Kasztejna, P., Nechev, K. and Staniewicz, R. J., "Aging Mechanism in Li-ion Cells and Calendar Life Predictions," J. Power Sources, 97, 13-21(2001).
- Bloom, I., Cole, B. W., Sohn, J. J., Jones, S. A., Polzin, E. G., Battaglia, V. S., Henriksen, G. L., Motloch, C., Richardson, R., Unkelhaeuser, T., Ingersoll, D. and Case, H. L., "An Accelerated Calendar and Cycle Life Study of Li-ion Cells," J. Power Sources, 101, 238-247(2001). https://doi.org/10.1016/S0378-7753(01)00783-2
- Ruetschi, P., "Aging Mechanisms and Service Life of Lead-acid Batteries," J. Power Sources, 127, 33-34(2004). https://doi.org/10.1016/j.jpowsour.2003.09.052
- Yi, J., Koo, B., Shin, C. B., Han, T. and Park, S., "Modeling the Effect of Aging on the Electrical and Thermal Behaviors of a Lithium-ion Battery During Constant Current Charge and Discharge Cycling," Computers and Chemical Engineering, 99, 31-39(2017). https://doi.org/10.1016/j.compchemeng.2017.01.006
- BSI., "Lead-acid Starter Batteries : Batteries for Micro-Cycle Applications," BSI, 19-20(2015).
Cited by
- An Optimized Preparation Procedure of Tetrabasic Lead Sulfate for Lead-Acid Batteries vol.168, pp.9, 2018, https://doi.org/10.1149/1945-7111/ac239e