DOI QR코드

DOI QR Code

Zn-Cr Alloy Plating from Acidic Chloride Bath: Effect of Temperature and Current Densities on Composition of Electrodeposits

산성염화욕에서의 Zn-Cr합금도금 : 합금화에 미치는 전류밀도와 온도의 영향

  • Kang, Soo Young (Dept. of Metallurgical & Material Engineering, Inha Technical College)
  • 강수영 (인하공업전문대학교 금속재료과)
  • Received : 2018.08.30
  • Accepted : 2018.11.20
  • Published : 2018.11.28

Abstract

The steel has been used in modern industry, car maker and electric appliance. The steel have some problem, specially corrosion problem. To solve corrosion problem, Zn electrodeposit on steel have been adapted. Recently, The modern industry asks to increase corrosion resistance. Naturally, Increasing corrosion resistance increases the thickness of Zn electrodeposit. But increasing thickness of Zn electrodeposit has some problems. In making part, There are some crack. This crack cause to decrease corrosion resistance. To solve this problem, it is interested in Zn Based alloy electrodeposit such as Zn-Cr. Here, the influence of the electrolytic conditions on the composition of the alloy plating in the chloride bath was investigated. The results are explained by the cathode overvoltage curve of Cr and Zn. As the current density of the cathode increases, Zn content of electrodeposit decrease and Cr content of electrodeposit increase. As the temperature of the electrolyte increases, Zn content of electrodeposit decrease and Cr content of electrodeposit increase.

강은 자동차 제조업체 및 전기 제품에 많이 사용되고 있으나 부식으로 많은 문제점이 발생한다. 이러한 부식문제를 해결하기 위해 강 위에 아연전기도금을 두껍게 하고 있다. 그러나 아연 도금의 두께가 두꺼워지면 부품 제조 시 크렉이 발생하기 쉬우며, 이로 인해 부식이 더욱더 악화될 수 있다. 이러한 부식 문제를 해결하기 위해 아연과 크롬합금도금에 관심이 집중되고 있다. 본 연구에서는 염화욕에서 합금도금의 조성에 미치는 전해조건의 영향을 조사하였다. 전류밀도가 증가함에 따라 Zn함량이 감소하고 Cr함량은 증가하였다. 전해액 온도가 증가함에 따라 Zn함량이 감소하고 Cr함량은 증가하였으며, 그 결과는 음극분극곡선으로 가지고 해석되었다.

Keywords

OHHGBW_2018_v9n11_285_f0001.png 이미지

Fig. 1. Process flow chart

OHHGBW_2018_v9n11_285_f0002.png 이미지

Fig. 2. Contents of Cr for the current density at 30℃

OHHGBW_2018_v9n11_285_f0003.png 이미지

Fig. 3. Contents of Cr for the current density at 40℃

OHHGBW_2018_v9n11_285_f0004.png 이미지

Fig. 4. Contents of Cr for the current density at 50℃

OHHGBW_2018_v9n11_285_f0005.png 이미지

Fig. 5. Contents of Cr for the temperature change with 10A/dm2 current density.

OHHGBW_2018_v9n11_285_f0006.png 이미지

Fig. 6. Contents of Cr for the temperature change with 15A/dm2 current density.

OHHGBW_2018_v9n11_285_f0007.png 이미지

Fig. 7. Contents of Cr for the temperature change with 30A/dm2 current density.

OHHGBW_2018_v9n11_285_f0008.png 이미지

Fig. 8. SEM images of surface morphology of Zn-Cr electrodeposit at (a) 10A/dm2 and (b) 30A/dm2

OHHGBW_2018_v9n11_285_f0009.png 이미지

Fig. 9. Conceptual diagram of relationship between current density at (a) low current density and (b) high current density

OHHGBW_2018_v9n11_285_f0010.png 이미지

Fig. 10. Conceptual diagram of relationship between current density at (a) low temperature and (b) high temperature

Table 1. Chemical composition of iron specimen

OHHGBW_2018_v9n11_285_t0001.png 이미지

Table 2. Electrolytic composition

OHHGBW_2018_v9n11_285_t0002.png 이미지

References

  1. Tz. Boiadjieva, D. Kovacheva, K. Petrov, S. Hardcastle, A. Sklyarov & M. Monev (2004), Electrodeposition, composition and structure of Zn-Cr alloys, 34, 315-321. https://doi.org/10.1023/B:JACH.0000015609.43585.ef
  2. A. Watson, Y. J. Su, M.R. El-Sharif & C.U. Chisholm. (1993), The Electrodeposition of Zinc Chromium Alloys and the Formation of Conversion Coatings without use of Chromate Solutions, Trans. Inst. Met. Finish., 71, 15-20. https://doi.org/10.1080/00202967.1993.11870976
  3. N. B. Berezin, N. V. Gudin, V. V. Chevela & A.G. Filippova(1992), Effect of complexation on electroplating of zinc-chromium alloys from acidic glycine baths, Zashtita metallov, 28, 961-967.
  4. N. B. Berezin, N. V. Gudin, A. G. Filippova, E.A. Matulenis & Yu. V. Borisov. (1993), Electroplating of a zinc-chromium alloy by a pulsed current, Zashtita metallov, 29, 99-103.
  5. T. Ohgai, J. S. Ki, T. Akiyama & H. Fukushima. (1998), Electrodeposition process of Zn-Cr alloys from sulfate baths, 30, 225-230.
  6. T. Akiyama, S. Kobayashi, J. Ki, T. Ohgai & H. Fukushima. (2000). Role of polyethylene glycol in electrodeposition of zinc-chromium alloys, J. Appl. Electrochem., 30, 817-822. https://doi.org/10.1023/A:1004093531922
  7. L. Guzman, M. Adami, W. Gissler, S. Klose & S. De Rossi. (2000). Vapour deposited Zn-Cr Alloy coatings for enhanced manufacturing and corrosion resistance of steel sheets, 125, 218-222. https://doi.org/10.1016/S0257-8972(99)00553-8
  8. I. C. Noyan, T. C. Huang & B. R. York. (1995), Residual stress/strain analysis in thin films by X-ray diffraction, Critical Reviews in Solid State and Mater. Sci, 20, 125-177. https://doi.org/10.1080/10408439508243733
  9. S. Y. Kang. (2017), Effect of current density, temperature and electrolyte concentration on Composition of Zn-Ni Electrodeposits, J. of the korea convergence society, 8, 307-312.
  10. S. Y. Kang. (2017), Effect of Electrolytic Condition on Composition of Zn-Co Alloy Plating, J. of the korea convergence society, 8, 287-292. https://doi.org/10.15207/JKCS.2017.8.4.287
  11. S. Y. Kang. (2018). Effect of Electrolytic Condition on Composition of Zn-Ni Alloy Plating, International Journal of Pure and Applied Mathematics, 118, 519-530.
  12. S. Y. Kang. (2016). Convergent Study of texture on the Mechanical Properties of Electrodeposits, J. of the korea convergence society, 7, 193-198. https://doi.org/10.15207/JKCS.2016.7.6.193
  13. S. Y. Kang. (2016). Convergent Study of Aluminum Anodizing Method on the Thermal Fartigue, J. of the korea convergence society, 7, 193-198. https://doi.org/10.15207/JKCS.2016.7.6.193
  14. S. Y. Kang. etc. (2015), Effect of Electrolysis Condition on Mechanical Property of Ni Electrodeposits, Journal of The Korean Institute of Surface Engineering, 48, 62-67. https://doi.org/10.5695/JKISE.2015.48.2.62
  15. S. Y. Kang. etc. (2014), Study on Improvement of Mechanical Properties after Heat Treatment of Hard Chromium Electrodeposits with Additives, Journal of The Korean Institute of Surface Engineering, 47, 116-120. https://doi.org/10.5695/JKISE.2014.47.3.116
  16. S. Y. Kang. etc. (2015), Effect of Phosphorous Acid Concentration on Mechanical Properties of Ni-P Electrodeposits, Journal of The Korean Institute of Surface Engineering, 48, 100-104. https://doi.org/10.5695/JKISE.2015.48.3.100
  17. J. W. Yoon. etc.(2012), A Study on the Metal surface Design from Mokumegane technique, Journal of Digital Convergence, 10, 431-437.
  18. S. W. Lee. etc. (2014), A Case Study and Analysis on the Performance Measurement systems of Manufacturing Companies, Journal of Digital Convergence, 12, 209-219.
  19. W. R. Yun. etc. (2017), Nail Art Convergence Design Using Mosaic Technique, Journal of Convergence for Information Technology], 7, 431-437.
  20. E. G. Lim. etc. (2013), Wearable antenna for Body area Network, Journal of Convergence for Information Technology], 3, 27-32.