DOI QR코드

DOI QR Code

Convergence study related to the development of new clinical training simulator for dental radiography based on augmented reality

증강현실 기반 치과방사선 임상시뮬레이터 개발과 관련된 융합 연구

  • Gu, Ja-Young (Department of Dental Hygiene, College of Health and Medicine, Namseoul University) ;
  • Lee, Jae-Gi (Department of Dental Hygiene, College of Health and Medicine, Namseoul University)
  • 구자영 (남서울대학교 치위생학과) ;
  • 이재기 (남서울대학교 치위생학과)
  • Received : 2018.09.10
  • Accepted : 2018.11.20
  • Published : 2018.11.28

Abstract

A clinician's skills in a dental clinic are an important factor in removing the risk factors of patients. Although many universities have conducted educational programs, there has been a limitation on repeated practice because of the limited space and equipment. In dental radiography, there are various intraoral radiographic techniques. Since proficiency in radiography is an important factor in obtaining accurate radiographs, repeated practice and skill learning are important at the pre-clinical stage. However, the recent amendment of diagnostic radiation has caused difficulties in repeated practice on the human body. This study aims to develop a clinical simulator for intraoral radiography that enables repeated practice and self-directed learning without any restriction by utilizing the augmented reality technology to foster clinical skills for dental hygienist.

치과병원에서 임상가가 시행하는 임상술기는 환자들의 위험요소를 제거하는데 중요한 요소이다. 대학에서 많은 임상술기 교육이 이루어지고 있지만, 실습실과 기자재의 특수성으로 인한 제약 때문에 반복적인 연습에 한계가 있다. 특히, 치과방사선 촬영은 다양한 구내 촬영법이 존재한다. 이에 대한 숙달은 정확한 방사선 사진 획득에 중요한 요소이기 때문에, 임상전단계에서의 반복 연습은 매우 중요하다. 그러나 최근 원자력법 개정으로 인체의 방사선 피폭량에 제한이 있기 때문에, 반복적인 실습에 어려움이 있어, 임상역량이 약화되고 있다. 이러한 한계점을 극복하기 위해서, 증강현실 기술을 활용하여 시간과 공간의 제약을 받지 않으며, 촬영법에 대한 반복 연습이 가능하고, 자기주도식 학습이 가능한 구내방사선 촬영 임상시뮬레이터를 개발하였다. 이를 통해, 치과위생사의 구내 방사선 촬영 기술을 숙달하고 임상실무역량을 향상하는데 기여하고자 한다.

Keywords

OHHGBW_2018_v9n11_161_f0001.png 이미지

Fig. 1. Pre-clinical simulation of dental radiology for dental hygienist based on augmented reality

OHHGBW_2018_v9n11_161_f0003.png 이미지

Fig. 2. Workflow of preclinical simulator for dental radiology based on the application interface on a smartphone

OHHGBW_2018_v9n11_161_f0004.png 이미지

Fig. 3. Photographs showing mandibular first (#46), second (#47), and third molars (#48) obtained using dental X-ray of the educational phantom head using the bisecting technique

OHHGBW_2018_v9n11_161_f0005.png 이미지

Fig. 4. Schematic illustration of the printing method with respect to the guide point (GP) at superior (A) and lateral (B) aspect. EPH:educational phantom head

OHHGBW_2018_v9n11_161_f0006.png 이미지

Fig. 5. The interface that appears when starting the application (A), and an image showing the actual operation of the augmented reality-based simulator (B)

OHHGBW_2018_v9n11_161_f0007.png 이미지

Fig. 6. An image showing the graphical user interface of the augmented reality-based clinical simulator

OHHGBW_2018_v9n11_161_f0008.png 이미지

Fig. 7. Radiographs of the educational phantom heads of the maxillary central and lateral incisors, which are shown on the screen of a smartphone. The figure at the bottom shows the angle of the radiograph acquired successfully.

References

  1. A. S. Rai, Mavrikakis E, & Lam WC. (2017). Teaching binocular indirect ophthalmoscopy to novice residents using an augmented reality simulator. Canadian journal of ophthalmology, 52(5), 430-434. DOI : 10.1016/j.jcjo.2017.02.015
  2. D. Ntourakis, R. Memeo, L. Soler, J. Marescaux, D. Mutter & P. Pessaux. (2016). Augmented Reality Guidance for the Resection of Missing Colorectal Liver Metastases: An Initial Experience, World journal of surgery. 40(2), 419-426. DOI: 10.1007/s00268-015-3229-8
  3. B. Eftekhar. (2016). A Smartphone App to Assist Scalp Localization of Superficial Supratentorial Lesions-Technical Note. World neurosurgery, 85, 359-363. DOI : 10.1016/j.wneu.2015.09.091
  4. F. J. Detmer, J. Hettig, D. Schindele, M. Schostak & C. Hansen. (2017). Virtual and Augmented Reality Systems for Renal Interventions: A Systematic Review. IEEE reviews in biomedical engineering, 10, 78-94. DOI : 10.1109/RBME.2017.2749527
  5. N. Jain, P. Youngblood, M. Hasel & S. Srivastava. (2017). An augmented reality tool for learning spatial anatomy on mobile devices. Clinical Anatomy, 60(6), 736-741. DOI : 10.1002/ca.22943
  6. P. Vavra, J. Roman, P. P. Zonca, P. Ihnat, M. Nemec, J. Kumar, N. Habib & A. El-Gendi. (2017). Recent Development of Augmented Reality in Surgery: A Review. Journal of healthcare engineering, 2017:4574172, 1-9. DOI : 10.1155/2017/4574172
  7. Y. Hou, L. Ma, R. Zhu & X. Chen. (2016). iPhone-Assisted Augmented Reality Localization of Basal Ganglia Hypertensive Hematoma. World neurosurgery, 94, 480-492. DOI : 10.1016/j.wneu.2016.07.047
  8. K. A. Jang, S. E. Heo, H. K. Kang & S. J. Lee. (2018). A Convergence Study on the Changes of Awareness and Preference according to the Clinical Application Experience of Digital Intraoral Scanners in Dental Hygienists. Journal of the Korea Convergence Society, 9(7), 135-140. DOI : 10.15207/JKCS.2018.9.7.135
  9. Regulation of safety management in diagnostic radiation, Korea centers for disease control (KCDC), National law information center (KCDC notification 2017-3, 2017.4.10: some amendments)
  10. A. Plessas. (2017). Computerized Virtual Reality Simulation in Preclinical Dentistry: Can a Computerized Simulator Replace the Conventional Phantom Heads and Human Instruction?. Simulation in healthcare : journal of the Society for Simulation in Healthcare, 12(5), 332-338. DOI : 10.1097/SIH.0000000000000250
  11. K. S. Lee, W. B. Lee & Y. L. Moon. (2018). AR monitoring technology for medical convergence. Journal of the Korea Convergence Society, 9(2), 119-124. DOI : 10.15207/JKCS.2018.9.2.119
  12. C. Llena, S. Folguera, L. Forner & F. J. Rodriguez-Lozano. (2018). Implementation of augmented reality in operative dentistry learning. European journal of dental education : official journal of the Association for Dental Education in Europe, 22(1), e122-e130. DOI : 10.1111/eje.12269
  13. R. A. de Azevedo, M. B. Correa, M. A. Torriani & R. G. Lund. (2018). Optimizing quality of dental carving by preclinical dental students through anatomy theory reinforcement. Anatomical sciences education, 11(4), 377-384. DOI : 10.1002/ase.1752
  14. E. Zhu, A. Hadadgar, I. Masiello & N. Zary. (2014). Augmented reality in healthcare education: an integrative review. PeerJ, 8;2:e469, 1-17. DOI : 10.7717/peerj.469
  15. K. I. Lee, J. S. Jang & T. R. Lee. (2016). Using the X-ray Image, Augmented Reality based electorcardiogram measurement system development. Journal of Digital Convergence, 14(9), 331-339. DOI : 10.14400/JDC.2016.14.9.331
  16. S. M. Nah & Y. J. Lee. (2016). The visual communication by augmented realiy. Journal of Digital Convergence, 14(11), 207-512. DOI : 10.14400/JDC.2016.141.11.5207
  17. Y. S. Jeong, Y. T. Kim & G. C. Park. (2017). A design of service improvement model for emergency medical system using augmented reality. Journal of Convergence Society for SMB, 7(1), 17-24. DOI : 10.22156/CS4SMB.2017.7.1.017
  18. J. W. Kim, S. J. Park. G. Y. Min & K. M. Lee. (2017). Virtual reality based situation immersive english dialogue learning system. Journal of Convergence Society for SMB, 7(6), 245-251. DOI : 10.22156/CS4SMB.2017.7.6.245
  19. T. M, Woodward. (2009). Dental radiology. Topics in companion animal medicine, 24(1), 20-36. DOI : 10.1053/j.tcam.2008.12.005
  20. K. H. Choi & J. K. Cho. (2018). Statistical analysis of national examination for radiological technologists in convergence perspective. Journal of the Korea Convergence Society, 9(5), 85-90. DOI : 10.15207/JKCS.2018.9.5.085