DOI QR코드

DOI QR Code

The Method to Reduce the Driving Time in (sLa-Camera-pRd) type

(sLa-Camera-pRd)타입의 구동시간 단축 방법

  • Received : 2018.10.02
  • Accepted : 2018.12.20
  • Published : 2018.12.28

Abstract

Gentry is responsible for moving the fine chip in the device that mounts the chip on the PCB. However, it is not easy to increase productivity because of the mechanical limitations of the gantry. Therefore, in this paper, we try to solve the method to increase the productivity by software. For this purpose, we propose a method to improve the productivity by shortening the movement time of the gantry. First, we calculated the total travel time for the current method(stop-motion). In addition, the total travel time is also calculated for the travel time reduction method presented in this paper. This method reduces the travel time by checking parts without stopping in front of the camera. As a result, we showed that the proposed method shortened the time of 16%. In the future, we will study time calculation methods for other types.

미소칩을 PCB상에 실장하는 장비에서 그 칩을 이동해주는 역할은 겐트리가 하고 있다. 그런데 겐트리의 기계적 한계 때문에 생산성을 증가시키는 것은 쉽지 않다. 따라서 본 논문에서는 생산성을 높일 수 있는 방법을 소프트웨어적으로 해결하고자 한다. 이를 위해 겐트리의 이동 시간을 단축함으로써 생산성을 향상시킬 수 있는 방법을 제시한다. 먼저, 현재 사용하고 있는 방법(stop-motion)에 대해 총 이동 시간을 계산해 보았다. 그리고 본 논문에서 제시하는 이동 시간 단축 방법(moving-motion)에 대해서도 총 이동 시간을 계산해 보았다. 이 방법은 카메라 앞에서 멈추지 않고 부품 검사를 함으로써 이동 시간을 줄이는 것이다. 그 결과 본 논문에서 제시한 방법이 16%의 시간을 단축하였음을 보여주었다. 향후에는 다른 타입에 대해서도 시간 계산 방법을 연구하는 것이다.

Keywords

OHHGBW_2018_v9n12_1_f0001.png 이미지

Fig. 2. Velocity Graph

OHHGBW_2018_v9n12_1_f0002.png 이미지

Fig. 3. Modified velocity graph

OHHGBW_2018_v9n12_1_f0003.png 이미지

Fig. 4. Trajectory of stop-motion

OHHGBW_2018_v9n12_1_f0004.png 이미지

Fig. 5. Velocity of stop-motion

OHHGBW_2018_v9n12_1_f0005.png 이미지

Fig. 6. acceleration graph

OHHGBW_2018_v9n12_1_f0006.png 이미지

Fig. 7. Velocity graph of X axis in(Camera-Placement)

OHHGBW_2018_v9n12_1_f0007.png 이미지

Fig. 8. Velocity graph in (Camera-Placement)

OHHGBW_2018_v9n12_1_f0008.png 이미지

Fig. 9. Velocity graph for time calculation

OHHGBW_2018_v9n12_1_f0009.png 이미지

Fig. 10. Modified velocity graph in(Camera-Placement)

OHHGBW_2018_v9n12_1_f0010.png 이미지

Fig. 11. Velocity graph for time calculation

OHHGBW_2018_v9n12_1_f0011.png 이미지

Fig. 12. Trajectory of moving-motion

OHHGBW_2018_v9n12_1_f0012.png 이미지

Fig. 13. Velocity of moving-motion

OHHGBW_2018_v9n12_1_f0013.png 이미지

Fig. 14. Screenshot of simulation program

OHHGBW_2018_v9n12_1_f0014.png 이미지

Fig. 1. (sLa-Camera-pRd) type

Table 1. Comparison Table of stop-motion, moving-motion

OHHGBW_2018_v9n12_1_t0001.png 이미지

References

  1. J. S. Lee. (2016). Defect Classification of Components for SMT Inspection Machines. masters thesis. Chungbuk National University, Chungbuk
  2. C. H. Lee. (2015). Integrated path planning algorithm for SMT inspection machines considering inspection delay time. masters thesis. Chungbuk National University, Chungbuk.
  3. K. S. Han. (2014). Enhanced uniformity of Chip Mounter by Force control. masters thesis. AJu University, Geonggi.
  4. H. Y. Kim. (2008). Failure Mode and Effect Analysis (FMEA) for Manhattan defect of Flexible Printed Circuit Board in Surface Mount Technology. masters thesis. Myungji University, Geonggi.
  5. S. S. Jo. (2017). Microscopic Inspection Automation of Small Components on Avionics System using Digital Image Processing Technique. masters thesis. Hanseo University, Geonggi.
  6. Beyer. D. M. Dangl. & Wendler. P. (2018). A Unifying View on SMT-Based Software Verification. Journal of automated reasoning, 60(3), 299-305. https://doi.org/10.1007/s10817-017-9432-6
  7. Merkle. T. Gotzen. R. (2015). Millimeter-Wave Surface Mount Technology for 3-D Printed Polymer Multichip Modules. IEEE Transactions on Components, Packaging and Manufacturing Technology, 5(2), 201-206. https://doi.org/10.1109/TCPMT.2014.2387232
  8. Brandl. F. Brandt. F. C. Eberl. C. Geist, (2018). Proving the Incompatibility of Efficiency and Strategyproofness via SMT Solving Journal of the Association for Computing Machinery, 65(2), 188-195.
  9. Treichel. T. H. (2018). A Reliability Examination of Lead-free Quartz Crystal Products Using Surface Mount Technology Engineered for Harsh Environments. SMTA News and Journal of surface mount technology, 18(3), 39-47, 2005.
  10. S. H. Kim. C. S. Kim.. (2017). The method of minimizing gantry driving time in surface mount. Cheonan: Kongju National University.
  11. S. H. Kim. C. S. Kim. (2018) Comparing the placement time of Stop-motion and moving-motion Indian Journal of Public Health Research & Development, 9(8), 633-637. DOI Number: 10.5958/0976-5506.2018.00804.5
  12. S. H. Kim. C. S. Kim. (2017) A Confirmation of the minimum moving time to the stop-motion in the (sLa-Camera-pLa)type. KIPS Tr. Software and Data Eng. 6(5), 223-228. DOI Number: 10.3745/KTSDE.2017.6.5.223
  13. S. H. Kim. C. S. Kim. (2017) A Comparison of the moving time about gantry. KIPS Tr. Software and Data Eng. 6(3), 135-140. DOI Number: 10.3745/KTSDE.2017.6.3.135
  14. S. H. Kim. C. S. Kim. (2015) The most Efficient Path Algorithm from Feeders to PCBs. International Journal of Control and Automation, 8(9), 11-20. DOI Number: 10.14257/ijca.2015.8.9.02
  15. Y. M. Kim. C. S. Kim. (2015) Development of the Air Stick Feeder for Inserting the Relay. Journal of the Korea Academia-Industrial cooperation Society 16(2), 1398-1402. DOI Number:10.5762/KAIS.2015.16.2.1398