Fig. 1. Illustrative weighting factors of the combiningmethods. Seven frequency components are selectedcentered at 5MHz, with a frequency step of 0.5MHz. The dashed line is assumed to be a powerspectrum of the received signals: (a) Uniformweight combining, and (b) Optimal weightcombining
Fig. 2. Estimated attenuation coefficients over the entiredepth. The attenuation coefficients for the referencephantom and sample are 0.3 and 0.5 dB/cm/MHz,respectively, and the beam focus is set to 40 mm.The errorbars represent the estimation variances ateach depth
Fig. 3. Estimation variances for the number of frequencycomponents. The frequency components areselected centered at the centroid of power spectrumat each depth with a frequency step of 0.1MHz: (a)20mm, and (b) 40mm
Table 1. Simulation parameters of a numerical phantom
References
- B. J. Oosterveld, J. M. Thijssen, P. C. Hartman, R. L. Romijn, and G. J. Rosenbusch, "Ultrasound attenuation and texture analysis of diffuse liver disease: Methods and preliminary results," Phys. Med. Biol., vol. 36, no. 8, pp. 1039-1064, Aug, 1991. https://doi.org/10.1088/0031-9155/36/8/002
- Y. Fujii, N. Taniguchi, K. Itoh, K. Shigeta, Y. Wang, J. W. Tsao, K. Kumasaki, and T. Itoh, "A new method for attenuation coefficient measurement in the liver: comparison with the spectral shift central frequency method," Journal of Ultrasound Med., vol. 21, no. 7, pp. 783-788, Jul, 2002. https://doi.org/10.7863/jum.2002.21.7.783
- M. Meziri, W. C. A. Pereira, A. Abdelwahab, C. Degott, and P. Laugier, "In vitro chronic hepatic disease haracterization with a multiparametric ultrasonic approach," Ultrasonics, vol. 43, pp. 305-313, 2005. https://doi.org/10.1016/j.ultras.2004.09.002
- R. Bouzitoune, M. Meziri, C. B. Machado, F. Padilla, and W. C. A. Pereira, "Can early hepatic fibrosis stages be discriminated by combining ultrasonic parameters?," Ultrasonics, vol. 68, pp. 120-126, 2016. https://doi.org/10.1016/j.ultras.2016.02.014
- R. M. Golub, R. E. Parsons, B. Sigel, E. J. Feleppa, J. Justin, H. A. Zaren, M. Rorke, J. Sokil-Melgar, and H. Kimitsuki, "Differentiation of breast tumors by ultrasonic tissue characterization," Journal Ultrasound Med., vol. 12, no. 10, pp. 601-608, Oct, 1993. https://doi.org/10.7863/jum.1993.12.10.601
- L. M. Cannon, A. J. Fagan, and J. E. Browne, "Novel Tissue Mimicking Materials for High Frequency Breast Ultrasound Phantoms," Ultrasound in Med. and Biol., vol. 37, no. 1, pp.122-135, 2011. https://doi.org/10.1016/j.ultrasmedbio.2010.10.005
- K. Nam, J. A. Zagzebski, and T. J. Hall, "Quantitative Assessment of In Vivo Breast Masses Using Ultrasound Attenuation and Backscatter," Ultrasonic Imaging, col. 35, no. 2, pp. 146-161, Apr, 2013. https://doi.org/10.1177/0161734613480281
- I. Katz-Hanani, T. Rothstein, D. Gaitini, Z. Gallimidi, and H. Azhari, "Age-Related Ultrasonic Properties of Breast Tissue In Vivo," Ultrasound in Med. and Biol., vol. 40, no. 9, pp. 2265-2271, 2014. https://doi.org/10.1016/j.ultrasmedbio.2014.03.034
- K. A. Wear, "Characterization of trabecular bone using the backscattered spectral centroid shift," IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 50, pp. 402-207, Apr, 2003. https://doi.org/10.1109/TUFFC.2003.1197963
- Y. Nagatani, K. Mizuno, T. Saeki, M. Matsukawa, T. Sakaguchi, and H. Hosoi, "Numerical and experimental study on the wave attenuation in bone-FDTD simulation of ultrasound propagation in cancellous bone," Ultrasonics, vol. 48, no. 6, pp. 607-612, Nov, 2007. https://doi.org/10.1016/j.ultras.2008.04.011
- K. Lee, "Dependences of the Attenuation and the Backscatter Coefficients on the Frequency and the Porosity in Bovine Trabecular Bone: Application of the Binary Mixture Model," Journal of the Korean Physical Society, vol. 60, no. 3, pp. 371-775, Feb, 2012. https://doi.org/10.3938/jkps.60.371
- C. Morin and C. Hellmich, "A multiscale poromicromechanical approach to wave propagation and attenuation in bone," Ultrasonics, vol. 54, pp. 1251- 1269, 2014. https://doi.org/10.1016/j.ultras.2013.12.005
- Y. Labyed, T. A. Bigelow, and B. L. McFarlin, "Estimate of the attenuation coefficient using a clinical array transducer for the detection of cervical ripening in human pregnancy," Ultrasonics, vol. 51, pp.34-39, 2011. https://doi.org/10.1016/j.ultras.2010.05.005
- M. Z. Kiss, T. Varghese, and M. A. Kliewer, "Ex vivo ultrasound attenuation coefficient for human cervical and uterine tissue from 5 to 10 MHz," Ultrasonics, vol. 51, pp.467-471, 2011. https://doi.org/10.1016/j.ultras.2010.11.012
- B. L. McFarlin, V. Kumar, T. A. Bigelow, D. G. Simpson, R. C. White-Traut, J. S. Abramowicz, and W. D. O'Brien Jr., "Beyond Cervical Length: A Pilot Study of Ultrasonic Attenuation for Early Detection of Preterm Birth Risk," Ultrasound in Med. and Biol., vol. 41, no. 11, pp.3023-3029, 2015. https://doi.org/10.1016/j.ultrasmedbio.2015.06.014
- J. Rouyer, T. Cueva, T. Yamamoto, A. Portal, and R. Lavarello, "In vivo estimation of attenuation and backscatter coefficients from human thyroids," IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 63, no. 9, pp. 1253-1261, 2016. https://doi.org/10.1109/TUFFC.2016.2532932
- P. Welch, "The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms," IEEE Trans. Audio and Electroacoustics, vol. 15, no. 2, pp. 70-73, Jun, 1967. https://doi.org/10.1109/TAU.1967.1161901
- M. Fink, F. Hottier, and J. F. Cardoso, "Ultrasonic signal processing for in vivo attenuation measurement: short time Fourier analysis," Ultrasonic Imaging, vol. 5, no. 2, pp. 117-135, Apr, 1983. https://doi.org/10.1177/016173468300500202
- T. Baldeweck, P. Laugier, A. Herment, and G. Berger, "Application of autoregressive spectral analysis for ultrasound attenuation estimation: interest in highly attenuating medium," IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 42, no. 1, pp. 99-109, Jan, 1995. https://doi.org/10.1109/58.368307
- L. X. Yao, J. A. Zagzebski, and E. L. Madsen, "Backscatter coefficient measurements using a reference phantom to extract depth-dependent instru-mentation factors," Ultrasonic Imaging, vol. 12, no. 1, pp. 58-70, Jan, 1990. https://doi.org/10.1177/016173469001200105
- H. Kim and T. Varghese, "Hybrid Spectral Domain Method for Attenuation Slope Estimation," Ultrasound Medicine and Biology, vol. 34, no. 11, pp. 1808-1819, Nov, 2008. https://doi.org/10.1016/j.ultrasmedbio.2008.04.011
- K. Samini and T. Varghese, "Optimum Diffraction- Corrected Frequency Shift Estimator of the Ultrasonic Attenuation Coefficient," IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 63, no. 5, pp. 691-702, May, 2016. https://doi.org/10.1109/TUFFC.2016.2538719
- G. Traney, J. Allison, S. Smith, and O. von Ramm, "A quantitative approach to speckle reduction via frequency compounding," Ultrasonic Imaging, vol. 8, no. 3, pp. 151-164, 1986. https://doi.org/10.1177/016173468600800301
- J. Sanchez, and M. Oelze, "An ultrasonic imaging speckle-suppression and contrast-enhancement technique by means of frequency compounding and coded excitation," IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 56, no. 7, pp. 1327-1339, 2009. https://doi.org/10.1109/TUFFC.2009.1189
- Y. Li and J. A. Zagzebski, "A frequency domain model for generating B-mode images with array transducers," IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 46, no. 3, pp. 690-699, May, 1999. https://doi.org/10.1109/58.764855