Fig. 1. (a) Asymmetric coplanar waveguide on an infinitelythick dielectric substrate, and (b) analysis model ofa double-slotted conducting wedge with a dielectricwedge
Fig. 2. (a) Magnitude of the potential on an aperture; (b)computed and (c) simulated equipotential contourof an ACPW when a=1.0 mm, s=1.0 mm, w1=1.0mm, w2=2.0 mm, e1r=e3r =e4r =1.0, and e2r=2.0
Fig. 3. Normalized per-unit length capacitance of anACPW versus s when a =20.0 mm, w1=1.0 mm,w2=2.0 mm, e1r=e3r =e4r =1.0, and e2r=2.0, 5.0, or10.0
Fig. 4. Normalized per-unit length capacitance of anACPW versus w2/w1 when a =20.0 mm, s =2.0 mm,e1r=e3r =e4r =1.0, and e2r=2.0, 5.0, or 10.0
Fig. 5. Characteristic impedance of an ACPW versus swhen a=20.0 mm, w1=1.0 mm, w2=2.0 mm, e1r=e3r=e4r =1.0, and e2r=2.0, 5.0, or 10.0
Fig. 6. Characteristic impedance of an ACPW versus w2/w1when a=20.0 mm, s=2.0 mm, e1r=e3r =e4r =1.0, ande2r=2.0, 5.0, or 10.0
References
- R. N. Simons, Coplanar waveguide circuits, components, and systems, New York: Wiley, 2001.
- V. F. Hanna and D. Thebault, "Analysis of asymmetrical coplanar waveguides," Int. J. Electron., vol. 50, no. 3, pp. 221-224, Feb. 1981. https://doi.org/10.1080/00207218108901250
- V. F. Hanna and D. Thebault, "Theoretical and experimental investigation of asymmetric coplanar waveguides," IEEE Trans. Microw. Theory Tech., vol. MTT-32, no. 12, pp. 1649-1651, Dec. 1984.
- T. Kitazawa and T. Itoh, "Propagation characteristics of coplanar-type transmission lines with lossy media," IEEE Trans. Microw. Theory Tech., vol. 39, no. 10, pp. 1694-1700, Oct. 1991. https://doi.org/10.1109/22.88540
- E. D. Ubeyli and I. Guler, "Multilayer perceptron neural networks to compute quasistatic parameters of asymmetric coplanar waveguides," Neurocomputing, vol. 62, pp. 349-365, Dec. 2004. https://doi.org/10.1016/j.neucom.2004.04.005
- C. Yildiz, S. Sagiroglu, and O. Saracoglu, "Neural models for coplanar waveguides with a finite dielectric thickness," Int. J. RF Microw. Comput-Aid. Eng., vol. 13, no. 6, pp. 438-446, Nov. 2003. https://doi.org/10.1002/mmce.10104
- C. Peng, S.-J. Fang, and W. En-cheng, "Analysis of characteristic impedance of asymmetric coplanar waveguide using finite-difference time-domain method," IEEE International Symposium on MAPE, Beijing, China, pp. 91-94, Aug. 2005.
- A. Khodja, D. Abbou, M. C. E. Yagoub, R. Touhami, and H. Baudrand, "Novel dispersive modal approach for fast analysis of asymmetric coplanar structures on isotropic/anisotropic substrates," J. Electromagn. Waves Appl., vol. 28, no. 12, pp. 1522-1540, Jul. 2014. https://doi.org/10.1080/09205071.2014.932260
- G. Kwon and K. C. Hwang, "Capacitance computation of coplanar waveguide using the Mellin transform and mode-matching," IEEE Microw. Wireless Compon. Lett., vol. 22, no. 8, pp. 385-387, Aug. 2012. https://doi.org/10.1109/LMWC.2012.2207709
- G. Kwon, K. C. Hwang, Y. Yang, and K.-Y. Lee, "Mellin transform approach for the capacitance computation of asymmetric coplanar striplines," Electromagnetics, vol. 34, no. 8, pp. 617-624, Oct. 2014. https://doi.org/10.1080/02726343.2014.948774
- H. J. Eom, "Integral transforms in electromagnetic formulation," J. Electromagn. Eng. Sci., vol. 14, no. 3, pp. 273-277, Sep. 2014. https://doi.org/10.5515/JKIEES.2014.14.3.273
- Computer Simulation Technology (CST). EM Studio [Online]. Available: http://www.cst.com