Fig. 1. Speed estimation structure based on AEKF
Fig. 2. A fuzzy system
Fig. 3. Membership functions of input and output variableof FIS: (a) Membership functions of DOMk; (b)Membership functions of sk
Fig. 4. T-S fuzzy system
Fig. 5. Output surface of FIS
Fig. 6 The curve of adjustment factor sk
Fig. 7. System block frame of sensorless vector controlbased on RAEKF
Fig. 8. Experimental platform
Fig. 9. Experimental results based on RAEKF in widespeed range
Fig. 10. Speed response and stator current based onRAEKF when the given speed ranges from +100pirad/s to -100pi rad/s
Fig. 11. Experimental results based on RAEKF at 1pi rad/swith step load from 0 to 150% rated torque
Fig. 12. Speed estimation performance based on RAEKFwhen speed-sensor fails at 100pi rad/s with 100%rated torque
Fig. 13. Experimental comparison of the estimated speedand the speed estimation error at 2pi rad/s with thestator resistance deviation |ΔRs|=30%. (a) EKF. (b)RAEKF.
Fig. 14. Experimental comparison of the estimated speedand the speed estimation error at 2pi rad/s with therotor resistance deviation |ΔRr |=30%. (a) EKF.(b) RAEKF.
Fig. 15. Experimental comparison of the estimated speedand the speed estimation error at 2pi rad/s with themutual inductance deviation |ΔLm |=30%. (a)EKF. (b) RAEKF
Fig. 16. Experimental comparison of the estimated speedand the speed estimation error at 100pi rad/s withgross external disturbance. (a) EKF. (b) RAEKF
Fig. 17. Experimental comparison of the estimated speedand the speed estimation error at 100pi rad/s withgross estimation error. (a) EKF. (b) RAEKF
Fig. 18. Experimental results based on EKF and RAEKF at100pi rad/s when a step load is added with 100%rated torque. (a) EKF. (b) RAEKF
Table 1. Motor parameters
Table 2. Comparison of the speed estimation error
참고문헌
- X. Sun, L. Chen, Z. Yang, and H. Zhu, "Speedsensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer," IEEE Trans. on Mechatron., vol. 18, no. 4, pp. 1357-1366, Aug. 2013. https://doi.org/10.1109/TMECH.2012.2202123
- T. Orlowska-Kowalska and M. Dybkowski, "A new formulation of reactive-power-based model reference adaptive system for sensorless induction motor drive," IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 6797-6807, Nov. 2015. https://doi.org/10.1109/TIE.2015.2432105
- A. Accetta, M. Cirrincione, M. Pucci, and G. Vitale, "Closed-loop MRAS speed observer for linear inductionmotor drives," IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 2279-2290, May/Jun. 2015. https://doi.org/10.1109/TIA.2014.2375377
- L. Zhao, J. Huang, N. Li, and W. Kong, "Secondorder sliding-mode observer with online parameter identification for sensorless induction motodrives," IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5280- 5289, Oct. 2014. https://doi.org/10.1109/TIE.2014.2301730
- R. Vieira, C. Gastaldini, R. Azzolin, and H. A. Gründling, "Sensorless sliding-mode rotor speed observer of induction machines based on magnetizing current estimation," IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4573-4582, Sep. 2014. https://doi.org/10.1109/TIE.2013.2290759
- S. Po-ngam and S. Sangwongwanich, "Stability and dynamic performance improvement of adaptive fullorder observers for sensorless PMSM drive," IEEE Trans. Power Electron., vol. 27, no. 2, pp. 588-600, Feb. 2012. https://doi.org/10.1109/TPEL.2011.2153212
- M. Zaky, "Stability analysis of speed and stator resistance estimators for sensorless induction motor drives," IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 858-870, Feb. 2012. https://doi.org/10.1109/TIE.2011.2161658
- W. Sun, Y. Yu, G. Wang, B. Li, and D. Xu "Design method of adaptive full order observer with or without estimated flux error in speed estimation algorithm," IEEE Trans. Power. Electron., vol. 31, no. 3, pp. 2609-2626, Mar. 2016. https://doi.org/10.1109/TPEL.2015.2440373
- C. Caruana, G. M. Asher, and M. Sumner, "Performance of HF signal injection techniques for zero-low-frequency vector control of induction machines under sensorless conditions," IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 225-238, Feb. 2006. https://doi.org/10.1109/TIE.2005.862257
- L. Xu, E. Inoa, Y. Liu, and B. Guan, "A new highfrequency injection method for sensorless control of doubly fed induction machines," IEEE Trans. Ind. Appl., vol. 48, no. 5, pp. 1556-1564, Sep/Oct. 2012. https://doi.org/10.1109/TIA.2012.2210015
- F. Alonge, T. Cangemi, F. D'Ippolito, A. Fagiolini and A. Sferlazza, "Convergence analysis of an extended Kalman filter for sensorless control of induction motors," IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2341-2352, Apr. 2015. https://doi.org/10.1109/TIE.2014.2355133
- I. Alsofyani and N. Idris, "Simple flux regulation for improving state estimation at very low and zero speed of a speed sensorless direct torque control of an induction motor," IEEE Trans. Power. Electron., vol. 31, no. 4, pp. 3027-3035, Apr. 2016. https://doi.org/10.1109/TPEL.2015.2447731
- M. Habibullah and D. Lu, "A speed-sensorless FSPTC of induction motors using extended Kalman filters," IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 6765-6778, Nov. 2015. https://doi.org/10.1109/TIE.2015.2442525
- Y. Shi, K. Sun, L. Huang, and Y. Li, "Online identification of permanent magnet fluxbased on extended Kalman filter for IPMSM drive with position sensorless control," IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4169-4178, Nov. 2012. https://doi.org/10.1109/TIE.2011.2168792
- L. Idkhajine, E. Monmasson, and A. Maalouf, "Fully FPGA-based sensorless control for synchronous AC drive using an extended Kalman filter," IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3908-3918, Oct. 2012. https://doi.org/10.1109/TIE.2012.2189533
- N. K. Quang, N. T. Hieu, and Q. P. Ha, "FPGA-based sensorless PMSM speed control using reduced-order extended Kalman filters," IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 6574-6582, Dec. 2014. https://doi.org/10.1109/TIE.2014.2320215
- Z. Yin, C. Zhao, J. Liu, and Y. Zhong, "Research on anti-error performance of speed and flux estimator for induction motor using robust reduced-order EKF," IEEE Trans. Ind. Informatics., vol. 9, no. 2, pp. 1037-1046, May. 2013. https://doi.org/10.1109/TII.2012.2222422
- M. Barut, R. Demir, E. Zerdali, and R. Inan, "Realtime implementation of bi input-extended Kalman filter-based estimator for speed-sensorless control of induction motors," IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4197-4206, Nov. 2012. https://doi.org/10.1109/TIE.2011.2178209
- Z. Yin, C. Zhao, Y. Zhong, and J. Liu, "Research on robust performance of speed-sensorless vector control for the induction motor using an interfacing multiplemodel extended kalman filter," IEEE Trans. Power. Electron., vol. 29, no. 6, pp. 3011-3019, Jun. 2014. https://doi.org/10.1109/TPEL.2013.2272091
- Z. Yin, G. Li, C. Du, J. Liu, X. Sun, and Y. Zhong, "An adaptive speed estimation method based on strong tracking extended Kalman filter with leastsquare for induction motors," Journal of Power Electron., vol. 17, no. 1, pp. 149-160, Jan. 2017. https://doi.org/10.6113/JPE.2017.17.1.149
- K. Szabat, T. Orlowska-Kowalska, and M. Dybkowski, "Indirect adaptive control of induction motor drive system with an elastic coupling," IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 4038-4042, Oct. 2009. https://doi.org/10.1109/TIE.2009.2022514
- M. Hilairet, F. Auger, and E. Berthelot, "Speed and rotor flux estimation of induction machines using a two-stage extended Kalman filter," Automatica, vol. 45, no. 8, pp. 1819-1827, Aug. 2009. https://doi.org/10.1016/j.automatica.2009.04.005
- V. Smidl and Z. Peroutka, "Advantages of squareroot extended Kalman filter for sensorless control of AC drives," IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4189-4196, Nov. 2012. https://doi.org/10.1109/TIE.2011.2180273
- N. Salvatore, A. Caponio, F. Neri, S. Stasi, and G. L. Cascella, "Optimization of delayed-state kalmanfilter- based optimization of delayed-state Kalmanfilter- based control of induction motors," IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 385-394, Jan. 2010. https://doi.org/10.1109/TIE.2009.2033489
- T. Schuhmann and W. Hofmann, "Improving operational performance of active magnetic bearings using Kalman filter and state feedback control," IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 821- 829, Feb. 2012. https://doi.org/10.1109/TIE.2011.2161056
- G. Foo, X. Zhang, and D. Vilathgamuwa, "A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter," IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3485-3495, Aug. 2013. https://doi.org/10.1109/TIE.2013.2244537