Fig. 1. Transformer differential protection
Fig. 2. Dual slope characteristics for differential relay
Fig. 3. Mathematical modeling of modified dual slopecharacteristics
Fig. 4. Modified dual slope characteristics for transformererdifferential protection
Fig. 5. Flow chart of modified dual slope differential relay
Fig. 6. Layout of a typical wind farm
Fig. 7. Operating points during internal fault and externalfault conditions according to the variation in windpower penetration
Fig. 8. Modified dual slope characteristics according tovarying wind power penetration
Fig. 9. Single slope characteristics with external fault andinternal fault operating points
Fig. 10. Primary Current, Secondary Current and Tripsignal for the single slope differential relay duringinter turn internal fault
Fig. 11. Primary Current, Secondary Current and Tripsignal for the single slope differential relay duringlow resistance LLL external fault
Fig. 12. Dual slope characteristics with the external faultoperating point in the presence of wind farms
Fig. 13. Primary Current, Secondary Current and Tripsignal for the dual slope differential relay duringturn to turn internal fault (All the wind generatorsare not in service)
Fig. 14. Primary Current, Secondary Current and Tripsignal for the differential relay during lowresistance LLL external fault (All the windgenerators are not in service)
Fig. 15. Primary Current, Secondary Current and Tripsignal for the modified dual slope differential relayduring turn to turn internal fault (All the windgenerators are not in service)
Fig. 16. Primary Current, Secondary Current and Tripsignal for the modified differential relay during arelow resistance LLL external fault (All the windgenerators not in service)
Table 1. Modified differential relay setting according to the wind generators in service
Table 2. Modified differential relay setting according to the wind speed
Table 3. Comparison of existing algorithms and proposed algorithm for transformer differential protection
References
- N. K. Roy and H. R. Pota, "Current status and issues of concern for the integration of distributed generation into electricity networks," IEEE Syst. J., vol. 9, no. 3, pp. 933-944, Sep. 2015. https://doi.org/10.1109/JSYST.2014.2305282
- L. Gertmar, L. Liljestrand, and H. Lendenmann, "Wind energy powers-that-be successor generation in globalization," IEEE Trans. Energy Convers., vol. 22, no. 1, pp. 13-28, Mar. 2007. https://doi.org/10.1109/TEC.2006.889601
- C. Carrillo, A. E. Feijoo, J. Cidras, and J. Gonzalez, "Power fluctuations in an isolated wind plant," IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 217-221, Mar. 2004. https://doi.org/10.1109/TEC.2003.822369
- S. S. Kaddah, M. M. El-Saadawi, and D. M. El- Hassanin, "Influence of distributed generation on distribution networks during faults," Electr. Power Components Syst., vol. 43, no. 16, pp. 1781-1792, Oct. 2015. https://doi.org/10.1080/15325008.2015.1057782
- C. J. Mozina, "Impact of smart grids and green power generation on distribution systems," IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1079-1090, May, 2013. https://doi.org/10.1109/TIA.2013.2253292
- E. C. Segatto and D. V. Coury, "A differential relay for power transformers using intelligent tools," IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1154-1162, Aug. 2006. https://doi.org/10.1109/TPWRS.2006.879268
- T. Zheng, J. Gu, S. F. Huang, F. Guo, and V. Terzija, "A new algorithm to avoid maloperation of transformer differential protection in substations with an inner bridge connection," IEEE Trans. Power Deliv., vol. 27, no. 3, pp. 1178-1185, Jul. 2012. https://doi.org/10.1109/TPWRD.2012.2192942
- A. Guzman, S. Zocholl, G. Benmouyal, and H. J. Altuve, "A current-based solution for transformer differential protection - Part I: Problem statement," IEEE Trans. Power Deliv., vol. 16, no. 4, pp. 485-491, Aug. 2001. https://doi.org/10.1109/61.956726
- A. Guzman, S. Zocholl, G. Benmouyal, and H. J. Altuve, "A current-based solution for transformer differential protection - Part II: Relay description and evaluation," IEEE Trans. Power Deliv., vol. 17, no. 4, pp. 886-893, Oct. 2002. https://doi.org/10.1109/TPWRD.2002.803736
- X. Lin, H. Weng, P. Liu, B. Wang, and Z. Bo, "Analysis of a sort of unusual mal-operation of transformer differential protection due to removal of external fault," IEEE Trans. Power Deliv., vol. 23, no. 3, pp. 1374-1379, Jul.,2008. https://doi.org/10.1109/TPWRD.2008.919250
- H. Weng and X. Lin, "Studies on the unusual maloperation of transformer differential protection during the nonlinear load switch-in," IEEE Trans. Power Deliv., vol. 24, no. 4, pp. 1824-1831, Oct. 2009. https://doi.org/10.1109/TPWRD.2008.2005655
- B. Noshad, M. Razaz, and S. G. Seifossadat, "A Model for the Ultra-saturation Phenomenon During Energization of an unloaded power transformer and its effect on differential protection," Electr. Power Components Syst., vol. 41, no. 12, pp. 1129-1145, May, 2013. https://doi.org/10.1080/15325008.2013.807895
- Y. C. Kang, B. E. Lee, S. H. Kang and P. A. Crossley, "Transformer protection based on the increment of flux linkages," in IEE Proceedings-Generation, Transm., Distrib., d vol. 151, no. 4, pp. 548-554, Jul. 2004.
- M. Tripathy, R. P. Maheshwari and H. K. Verma, "Radial basis probabilistic neural network for differential protection of power transformer," IET Gener. Transm. Distrib., vol. 2, no. 1, pp. 43-52, Jan. 2008. https://doi.org/10.1049/iet-gtd:20070037
- Myong-Chul Shin, Chul-Won Park and Jong-Hyung Kim, "Fuzzy logic-based relaying for large power transformer protection," in IEEE Trans. Power Deliv., vol. 18, no. 3, pp. 718-724, Jul. 2003. https://doi.org/10.1109/TPWRD.2003.813598
- A. Rahmati, "An adaptive differential relay for CT saturation based on wavelet transform," 2010 Int. Conf. Adv. Energy Eng. ICAEE 2010, pp. 89-94, Jun. 2010.
- Z. Moravej, A. A. Abdoos, and M. Sanaye-Pasand, "A new approach based on S-transform for discrimination and classification of inrush current from internal fault currents Using Probabilistic Neural Network," Electr. Power Components Syst., vol. 38, no. 10, pp. 1194-1210, Jul.,2010. https://doi.org/10.1080/15325001003649476
- K. Al-Othman and K. M. El-Naggar, "A new digital dynamic algorithm for detection of magnetizing inrush current in transformers," Electr. Power Components Syst., vol. 37, no. 4, pp. 355-372, Mar. 2009. https://doi.org/10.1080/15325000802548699
- D. Guillen, H. Esponda, E. Vazquez, and G. Idarraga- Ospina, "Algorithm for transformer differential protection based on wavelet correlation modes," IET Gener. Transm. Distrib., vol. 10, no. 12, pp. 2871- 2879, Aug.,2016. https://doi.org/10.1049/iet-gtd.2015.1147
- Z. Moravej and A. A. Abdoos, "An improved fault detection scheme for power transformer protection," Electr. Power Components Syst., vol. 40, no. 10, pp. 1183-1207, Jul. 2012. https://doi.org/10.1080/15325008.2012.682251
- N. Villamagna and P. A. Crossley, "A CT saturation detection algorithm using symmetrical components for current differential protection," IEEE Trans. Power Deliv., vol. 21, no. 1, pp. 38-45, Jan. 2006.
- S. Kumar Murugan, S. Simon, K. Sundareswaran, P. Nayak, and N. Padhy, "An empirical fourier transform based power transformer differential protection," IEEE Trans. Power Deliv., vol. 32, no. 1, pp. 209-218, Feb. 2017. https://doi.org/10.1109/TPWRD.2016.2575981
- L. M. R. Oliveira and A. J. M. Cardoso, "Comparing power transformer turn-to-turn faults protection methods: Negative sequence component versus space vector algorithms," IEEE Trans. Ind. Appl. 2016.
- S. Ala, M. Tripathy, and A. K. Singh, "Identification of internal faults in power transformer using symmetrical components and park's plots," 2009 Int. Conf. Power Syst. ICPS '09, pp. 25-30, Dec. 2009.
- G. Diaz, P. Arboleya and J. Gomez-Aleixandre, "Park-based and zero sequence-based relaying techniques with application to transformers protection," in IEE Proceedings-Generation, Transm., Distrib., vol. 151, no. 5, pp. 619-624, Sept. 2004. https://doi.org/10.1049/ip-gtd:20040716
- J. Wang and R. Hamilton, "Analysis of transformer inrush current and comparison of harmonic restraint methods in transformer protection," 61st Annual Conference for Protective Relay Engineers, College Station, TX, pp. 142-169, Apr.,2008.
- W. Zhang, Q. Tan, S. Miao, L. Zhou, and P. Liu, "Self-adaptive transformer differential protection," IET Gener. Transm. Distrib., vol. 7, no. 1, pp. 61-68, Jan. 2013. https://doi.org/10.1049/iet-gtd.2011.0739
- S. Das and S. Santoso, "Effect of wind speed variation on the short-circuit contribution of a wind turbine," 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, pp. 1-8, July 2012.
- "Transformer differential relays with percentage and harmonic restraint, Types STD15C, STD16C Relay Manual", GE Protection and Control.
- "AD41-301E differential relay technical manual" ABB, 1991.
- "MiCOM P642, P643 and P645 transformer protection relay technical manual", Schneider Electric, 2010.