DOI QR코드

DOI QR Code

공융 갈륨-인듐 액체금속 전극 기반 전기이중층 커패시터

An Electric Double-Layer Capacitor Based on Eutectic Gallium-Indium Liquid Metal Electrodes

  • 김지혜 (서울과학기술대학교 화공생명공학과) ;
  • 구형준 (서울과학기술대학교 화공생명공학과)
  • KIM, JI-HYE (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • KOO, HYUNG-JUN (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
  • 투고 : 2018.11.16
  • 심사 : 2018.12.30
  • 발행 : 2018.12.30

초록

Gallium-based liquid metal, e.g., eutectic gallium-indium (EGaIn), is highly attractive as an electrode material for flexible and stretchable devices. On the liquid metal, oxide layer is spontaneously formed, which has a wide band-gap, and therefore is electrically insulating. In this paper, we fabricate a capacitor based on eutectic gallium-indium (EGaIn) liquid metal and investigate its cyclic voltammetry (CV) behavior. The EGaIn capacitor is composed of two EGaIn electrodes and electrolyte. CV curves reveal that the EGaIn capacitor shows the behavior of electric double-layer capacitors (EDLC), where the oxide layers on the EGaIn electrodes serves as the dielectric layer of EDLC. The oxide thicker than the spontaneously-formed native oxide decreases the capacitance of the EGaIn capacitor, due to increased voltage loss across the oxide layer. The EGaIn capacitor without oxide layer exhibits unstable CV curves during the repeated cycles, where self-repair characteristic of the oxide was observed. Finally, the electrolyte concentration is optimized by comparing the CV curves at various electrolyte concentrations.

키워드

SSONB2_2018_v29n6_627_f0001.png 이미지

Fig. 4. Stability of the EGaIn capacitors depending on the thickness of oxide layer. (a) CV curves of the oxide-free EGaIn capacitor during 200 cycles. (b) Comparison of CV curve of the oxide-free EGaIn capacitor at 200th cycle, to that of the EGaIn capacitor with the native oxide at the first cycle. (c) CV curve of the EGaIn capacitor with thicker oxide by 1 V

SSONB2_2018_v29n6_627_f0002.png 이미지

Fig. 5. Capacitance for 200 cycles at difference oxide thickness. The scan rate is 500 mV/s

SSONB2_2018_v29n6_627_f0003.png 이미지

Fig. 6. Effect of electrolyte concentrations on CV curves of EGaIn based capacitors; (a) 0.01 M, (b) 0.1 M, (c) 1 M. For the stable CV measurement, oxide skin was further oxidized under 1 V for 30 seconds. Aqueous Na2SO4 solutions were used as the electrolyte

SSONB2_2018_v29n6_627_f0004.png 이미지

Fig. 1. (a) Experimental setup of a EGaIn capacitor. (b) Electrochemical process for removal or formation of the oxide layer on EGaIn electrodes by bias application

SSONB2_2018_v29n6_627_f0005.png 이미지

Fig. 2. (a) A top-view image of the EGaIn liquid metal electrodes of the EGaIn capacitor. Scale bar=0.5 mm. (b) Chargingdischarging mechanism of the EGaIn capacitor. (c) CV curves of the EGaIn capacitor with native oxide at different sweep rates. 1 M of Na2SO4 aqueous solution was used as electrolyte

SSONB2_2018_v29n6_627_f0006.png 이미지

Fig. 3. (a) Top-view images of EGaIn liquid metal electrodes after further oxidation with different oxidative voltages. Scale bar=0.5 mm. Each oxidative voltage was applied for 30 s. (b)CV curves of the capacitors with the EGaIn electrodes in (a). The scan rate is 200 mV/s

참고문헌

  1. M. Varga, C. Ladd, S. Ma, J. Holbery, and G. Trsoter, "On-skin liquid metal inertial sensor", Lab on a Chip, Vol. 17, No. 19, 2017, pp. 3272-3278. https://doi.org/10.1039/C7LC00735C
  2. X. Shi, C. H. Cheng, Y. Zheng, and P. Wai, "An egain-based flexible piezoresistive shear and normal force sensor with hysteresis analysis in normal force direction", Journal of Micromechanics and Microengineering, Vol. 26, No. 10, 2016, p. 105020. https://doi.org/10.1088/0960-1317/26/10/105020
  3. H. Ota, K. Chen, Y. Lin, D. Kiriya, H. Shiraki, Z. Yu, T. J. Ha, and A. Javey, "Highly deformable liquid-state heterojunction sensors", Nature Communications, Vol. 5, 2014, p. 5032. https://doi.org/10.1038/ncomms6032
  4. J. B. Chossat, Y. L. Park, R. J. Wood, and V. Duchaine, "A soft strain sensor based on ionic and metal liquids", IEEE Sensors Journal, Vol. 13, No. 9, 2013, pp. 3405-3414. https://doi.org/10.1109/JSEN.2013.2263797
  5. Y. Gao, H. Ota, E. W. Schaler, K. Chen, A. Zhao, W. Gao, H. M. Fahad, Y. Leng, A. Zheng, F. Xiong, C. Zhang, L. C. Tai, P. Zhao, R. S. Fearing, and A. Javey, "Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring", Advanced Materials, Vol. 29, No. 39, 2017, p. 1701985. https://doi.org/10.1002/adma.201701985
  6. G. Li, X. Wu, and D. W. Lee, "A galinstan-based inkjet printing system for highly stretchable electronics with self-healing capability", Lab on a Chip, Vol. 16, No. 8, 2016, pp. 1366-1373. https://doi.org/10.1039/C6LC00046K
  7. A. Tabatabai, A. Fassler, C. Usiak and C. Majidi, "Liquidphase gallium-indium alloy electronics with microcontact printing", Langmuir, Vol. 29, No. 20, 2013, p. 6194. https://doi.org/10.1021/la401245d
  8. M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, "Eutectic gallium-indium (egain): A liquid metal alloy for the formation of stable structures in microchannels at room temperature", Advanced Functional Materials, Vol. 18, No. 7, 2008, pp. 1097-1104. https://doi.org/10.1002/adfm.200701216
  9. T. Liu, P. Sen, and C. J. Kim, "Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices", Journal of Microelectromechanical Systems, Vol. 21, No. 2, 2012, pp. 443-450. https://doi.org/10.1109/JMEMS.2011.2174421
  10. D. Zrnic and D. S. Swatik, "On the resistivity and surface tension of the eutectic alloy of gallium and indium", Journal of the Less Common Metals, Vol. 18, No. 1, 1969, pp. 67-68. https://doi.org/10.1016/0022-5088(69)90121-0
  11. C. Karcher, V. Kocourek, and D. Schulze, "Experimental investigations of electromagnetic instabilities of free surfaces in a liquid metal drop", International Scientific Colloquium, Modelling for Electromagnetic Processing, 2003, pp. 105-110.
  12. J. H. Kim, S. Kim, J. H. So, K. Kim, and H. J. Koo, "Cytotoxicity of Gallium-Indium Liquid Metal in Aqueous Environment", ACS Applied Materials & Interfaces, Vol. 10, No. 20, 2018, pp. 17448-17454. https://doi.org/10.1021/acsami.8b02320
  13. Y. Lu, Q. Hu, Y. Lin, D. B. Pacardo, C. Wang, W. Sun, F. S. Ligler, M. D. Dickey, and Z. Gu, "Transformable liquid-metal nanomedicine", Nature Communications, Vol. 6, 2015, p. 10066. https://doi.org/10.1038/ncomms10066
  14. J. E. Chandler, H. H. Messer, and G. Ellender, "Cytotoxicity of gallium and indium ions compared with mercuric ion", Journal of Dental Research, Vol. 73, No. 9, 1994, pp. 1554-1559. https://doi.org/10.1177/00220345940730091101
  15. R. C. Chiechi, E. A. Weiss, M. D. Dickey, and G. M. Whitesides, "Eutectic gallium-indium (egain): A moldable liquid metal for electrical characterization of self-assembled monolayers", Angewandte Chemie International Edition, Vol. 47, No. 1, 2007, pp. 142-144. https://doi.org/10.1002/anie.200703642
  16. A. J. Downs, "Chemistry of aluminium, gallium, indium and thallium", Vol. 1, Springer, the Netherlands, 1993.
  17. J. Thelen, M. D. Dickey, and T. Ward, "A study of the production and reversible stability of egain liquid metal microspheres using flow focusing", Lab on a Chip, Vol. 12, No. 20, 2012, pp. 3961-3967. https://doi.org/10.1039/c2lc40492c
  18. Q. Xu, N. Oudalov, Q. Guo, H. M. Jaeger, and E. Brown, "Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium", Physics of Fluids, Vol. 24, No. 6, 2012, p. 063101. https://doi.org/10.1063/1.4724313
  19. S. Holcomb, M. Brothers, A. Diebold, W. Thatcher, D. Mast, C. Tabor, and J. Heikenfeld, "Oxide-free actuation of gallium liquid metal alloys enabled by novel acidified siloxane oils", Langmuir, Vol. 32, No. 48, 2016, pp. 12656-12663. https://doi.org/10.1021/acs.langmuir.6b03501
  20. Y. Tokuda, J. L. B. Moya, G. Memoli, T. Neate, D. R. Sahoo, S. Robinson, J. Pearson, M. Jones, and S. Subramanian, "Programmable liquid matter: 2d shape deformation of highly conductive liquid metals in a dynamic electric field", Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces, ACM, 2017, p. 142.
  21. S. Zhu, J. H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, and M. D. Dickey, "Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core", Advanced Functional Materials, Vol. 23, No. 18, 2013, pp. 2308-2314. https://doi.org/10.1002/adfm.201202405
  22. T. Hutter, W. A. C. Bauer, S. R. Elliott, and W. T. Huck, "Formation of spherical and non spherical eutectic gallium- indium liquid metal microdroplets in microfluidic channels at room temperature", Advanced Functional Materials, Vol. 22, No. 12, 2012, pp. 2624-2631. https://doi.org/10.1002/adfm.201200324
  23. A. Diebold, A. Watson, S. Holcomb, C. Tabor, D. Mast, M. Dickey, and J. Heikenfeld, "Electrowetting-actuated liquid metal for rf applications", Journal of Micromechanics and Microengineering, Vol. 27, No. 2, 2017, p. 025010. https://doi.org/10.1088/0960-1317/27/2/025010
  24. A. Fassler and C. Majidi, "3d structures of liquid-phase gain alloy embedded in pdms with freeze casting", Lab on a Chip, Vol. 13, No. 22, 2013, pp. 4442-4450. https://doi.org/10.1039/c3lc50833a
  25. Y. Zheng, Z. Z. He, J. Yang, and J. Liu, "Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism", Scientific Reports, Vol. 4, 2014, p. 4588.
  26. C. Ladd, J. H. So, J. Muth, and M. D. Dickey, "3d printing of free standing liquid metal microstructures", Advanced Materials, Vol. 25, No. 36, 2013, pp. 5081-5085. https://doi.org/10.1002/adma.201301400
  27. J. W. Boley, E. L. White, G. T. C. Chiu, and R. K. Kramer, "Direct writing of gallium-indium alloy for stretchable electronics", Advanced Functional Materials, Vol. 24, No. 23, 2014, pp. 3501-3507. https://doi.org/10.1002/adfm.201303220
  28. Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon, and T. Buonassisi, "Atomic layer deposited gallium oxide buffer layer enables 1.2 v open circuit voltage in cuprous oxide solar cells", Advanced Materials, Vol. 26, No. 27, 2014, pp. 4704-4710. https://doi.org/10.1002/adma.201401054
  29. J. So and H. J. Koo, "Study on the Electrochemical Characteristics of a EGaIn Liquid Metal Electrode for Supercapacitor Applications", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 2, 2016, pp. 176-181. https://doi.org/10.7316/KHNES.2016.27.2.176
  30. M. D. Stoller and R. S. Ruoff, "Best practice methods for determining an electrode material's performance for ultracapacitors", Energy & Environmental Science, Vol. 3, No. 9, 2010, pp. 1294-1301. https://doi.org/10.1039/c0ee00074d
  31. L. R. F. Allen J. Bard, "Electrochemical methods fundamentals and applications", Willey, USA, 2001.
  32. J. H. So, H. J. Koo, M. D. Dickey, and O. D. Velev, "Ionic current rectification in soft matter diodes with liquid metal electrodes", Advanced Functional Materials, Vol. 22, No. 3, 2012, pp. 625-631. https://doi.org/10.1002/adfm.201101967
  33. H. J. Koo, J. H. So, M. D. Dickey, and O. D. Velev, "Towards all soft matter circuits: Prototypes of quasi liquid devices with memristor characteristics", Advanced Materials, Vol. 23, No. 31, 2011, pp. 3559-3564. https://doi.org/10.1002/adma.201101257
  34. M. R. Khan, C. B. Eaker, E. F. Bowden, and M. D. Dickey, "Giant and switchable surface activity of liquid metal via surface oxidation", Proceedings of the National Academy of Sciences, Vol. 111, No. 39, 2014, pp. 14047-14051.
  35. D. Membreno, L. Smith, K. S. Shin, C. O. Chui, and B. Dunn, "A high-energy-density quasi-solid-state carbon nanotube electrochemical double-layer capacitor with ionogel electrolyte", Translational Materials Research, Vol. 2, No. 1, 2015, p. 015001. https://doi.org/10.1088/2053-1613/2/1/015001
  36. Y. Q. Jiang, Q. Zhou, and L. Lin, "Planar mems supercapacitor using carbon nanotube forests", 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009, pp. 587-590.
  37. D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conedera, and H. Durou, "Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor", Journal of Power Sources, Vol. 195, No. 4, 2010, pp. 1266-1269. https://doi.org/10.1016/j.jpowsour.2009.08.085