Si (001) 표면 결함 원자힘 현미경 전산모사

Atomic Force Microscopy Simulation for Si (001) Surface Defects

  • 조준영 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 김대희 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 김유리 (포항공과대학교 창의IT 융합공학과) ;
  • 김기영 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 김영철 (한국기술교육대학교 에너지신소재화학공학부)
  • Jo, Junyeong (School of Energy Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Dae-Hee (School of Energy Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Yurie (Department of Creative IT Engineering, Pohang University of Science and Technology) ;
  • Kim, Ki-Yung (School of Energy Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Yeong-Cheol (School of Energy Materials and Chemical Engineering, Korea University of Technology and Education)
  • 투고 : 2018.10.08
  • 심사 : 2018.12.18
  • 발행 : 2018.12.31

초록

Atomic force microscopy (AFM) simulation for Si (001) surface defects was conducted by using density functional theory (DFT). Three major defects on the Si (001) surface are difficult to analyze due to external noises that are always present in the images obtained by AFM. Noise-free surface defects obtained by simulation can help identify the real surface defects on AFM images. The surface defects were first optimized by using a DFT code. The AFM tip was designed by using five carbon atoms and positioned on the surface to calculate the system's energy. Forces between tip and surface were calculated from the energy data and converted into an AFM image. The simulated AFM images are noise-free and, therefore, can help evaluate the real surface defects present on the measured AFM images.

키워드

참고문헌

  1. R. J. Hamers and U. K. Kohler, J. Vac, Sci. Technol., A, 7, 2854 (1989). https://doi.org/10.1116/1.576158
  2. G. Binnig and C. F. Quate, Phys. Rev. Lett., 56, 930 (1986). https://doi.org/10.1103/PhysRevLett.56.930
  3. K. L. Westra, A. W. Mitchell, and D. J. Tomson, Appl. Phys., 74, 3608 (1998).
  4. H.-J. Butt, B. Cappella, and M. Kappl, Surf. Sci. Rep., 59, 1 (2005). https://doi.org/10.1016/j.surfrep.2005.08.003
  5. H.-J. Butt and M. Jaschke, Nanotechnology, 6, 1 (1995). https://doi.org/10.1088/0957-4484/6/1/001
  6. S. Sanna, C. Dues, and W.G. Schmidt, Comput. Mater. Sci., 103, 145 (2015). https://doi.org/10.1016/j.commatsci.2015.03.025
  7. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558
  8. G. Kresse, Thesis, Technische Universiat Wien (1993).
  9. G. Kresse and J. Furthmuller, Comput. Mater. Sci., 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  10. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  11. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  12. H. J. Monkhorst and J. D. Pack, Phys. Rev., B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  13. L. Kantorovich and C. Hobbs, Phys. Rev., 73, 245420 (2006). https://doi.org/10.1103/PhysRevB.73.245420
  14. https://www.mathworks.com/.
  15. D. J. Chadi, Phys. Rev. Lett., 43, 43 (1979). https://doi.org/10.1103/PhysRevLett.43.43
  16. W. S. Verwoerd, Surf. Sci., 90, 581 (1980).
  17. M. T. Yin and M. L. Cohen, Phys. Rev., 24, 2303 (1981). https://doi.org/10.1103/PhysRevB.24.2303
  18. C. Hobbs and L. Kantorovich, Phys. Rev. Lett., 96, 106104 (2006). https://doi.org/10.1103/PhysRevLett.96.106104
  19. http://jp-minerals.org/
  20. R. A. Wolkow, Phys. Rev. Lett., 68, 2636 (1992). https://doi.org/10.1103/PhysRevLett.68.2636