DOI QR코드

DOI QR Code

Optimization of Ar Reshape Process for 4H-SiC Trench MOSFET

4H-SiC Trench MOSFET 응용을 위한 Ar Reshape 공정 최적화

  • Sung, Min-Je (National Institute for Nanomaterials Technology, Pohang University of Science and Technology (POSTECH)) ;
  • Kang, Min-Jae (National Institute for Nanomaterials Technology, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Hong-Ki (National Institute for Nanomaterials Technology, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Seong-jun (National Institute for Nanomaterials Technology, Pohang University of Science and Technology (POSTECH)) ;
  • Lee, Jung-Yoon (National Institute for Nanomaterials Technology, Pohang University of Science and Technology (POSTECH)) ;
  • Lee, Wonbeom (National Institute for Nanomaterials Technology, Pohang University of Science and Technology (POSTECH)) ;
  • Lee, Nam-suk (National Institute for Nanomaterials Technology, Pohang University of Science and Technology (POSTECH)) ;
  • Shin, Hoon-Kyu (National Institute for Nanomaterials Technology, Pohang University of Science and Technology (POSTECH))
  • Received : 2018.12.08
  • Accepted : 2018.12.23
  • Published : 2018.12.31

Abstract

For 4H-SiC trench MOSFET which can reduce on-resistance and switching losses compared to 4H-SiC planar MOSFET, the optimization study for decrease of sub-trench was carried out. In order to decrease sub-trench, Ar reshape process was used and trench shapes were observed as a function of temperature and process time. As a result, it was confirmed that the process conditions for $1500^{\circ}C$ and 20 min were most effective for the suitable trench profiles. In addition, dry/wet oxidation was performed at the Ar reshaped-samples to observe the oxidation thickness with different crystal orientations.

본 논문에서는 planar MOSFET 대비 on 저항 감소 및 스위칭 속도 개선의 장점이 있는 4H-SiC trench MOSFET응용을 위하여 trench MOSFET 중요 이슈 중 하나인 sub-trench의 개선연구를 수행하였다. sub-trench의 제거를 위하여 Ar reshape 공정을 수행하였고, 온도와 공정시간을 변화해가며 trench 형태의 변화를 관찰하였다. 그 결과 $1500^{\circ}C$, 20분 조건에서 가장 적절한 sub-trench 완화를 확인하였다. 또한 Ar reshape 공정 이후 건식/습식 산화공정을 진행하여 결정방향에 따른 산화막 두께변화에 대해 확인하였다.

Keywords

JGGJB@_2018_v22n4_1234_f0001.png 이미지

Fig. 1. Procedures of trench etching. 그림 1. 트렌치 에칭 과정

JGGJB@_2018_v22n4_1234_f0002.png 이미지

Fig. 2. SEM images for (a) as-etched sample and (b) Ar reshaped sample for 30 min at 1700℃, respectively. 그림 2. (a) Ar reshape 공정 전 샘플 및 (b) 1700℃ 30분 조건 Ar reshape 공정 샘플의 SEM 이미지

JGGJB@_2018_v22n4_1234_f0003.png 이미지

Fig. 3. SEM images for 10 min Ar reshaped samples at (a) 1100℃, (b) 1300℃, (c) 1400℃, (d) 1500℃, and (e) 1600℃, respectively. 그림 3. 10분 동안 Ar reshape한 샘플의 SEM 이미지. (a) 1100℃, (b) 1300℃, (c) 1400℃, (d) 1500℃, (e) 1600℃.

JGGJB@_2018_v22n4_1234_f0004.png 이미지

Fig. 4. SEM images for 20 min Ar reshaped samples at (a) 1400℃, (b) 1500℃, and (c) 1600℃, respectively. SEM images for dry/wet oxidation and poly-Si deposition by LPCVD on Ar reshaped samples at (d) 1400℃, (e) 1500℃, and (f) 1600℃, respectively. 그림 4. 20분 동안 Ar reshape한 샘플의 SEM 이미지. (a) 1400℃, (b) 1500℃, (c) 1600℃. 건식/습식 산화공정 및 poly-Si LPCVD성장한 샘플의 SEM 이미지. (d) 1400℃, (e) 1500℃, (f) 1600℃.

JGGJB@_2018_v22n4_1234_f0005.png 이미지

Fig. 5. SEM images for (a) as-etched sample and (b) sample after Ar reshape process, respectively. 그림 5. (a) Ar reshape 공정 전, (b) Ar reshape 공정 후의 샘플의 SEM 이미지

References

  1. A. K. Agarwal, J. B. Casady, L. B. Rowland, W. F. Valek, M. H.White, and C. D. Brand: IEEE Electron Device Lett. 18, 586, 1997. https://doi.org/10.1109/55.644079
  2. A. Takatsuka, Y. Tanaka, K. Yano, T. Yatsuo, Y. Ishida, and K. Arai: Jpn. J. Appl. Phys. 48, 041105. 2009. https://doi.org/10.1143/JJAP.48.041105
  3. Y. Kawada, T. Tawara, S. Nakamura, T. Tamori, and N. Iwamuro : Jpn. J. Appl. Phys. 48, 116508, 2009. https://doi.org/10.1143/JJAP.48.116508