DOI QR코드

DOI QR Code

Optical Image Encryption Technique Based on Hybrid-pattern Phase Keys

  • Sun, Wenqing (Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology) ;
  • Wang, Lei (Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology) ;
  • Wang, Jun (Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology) ;
  • Li, Hua (Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology) ;
  • Wu, Quanying (Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology)
  • Received : 2018.07.22
  • Accepted : 2018.10.05
  • Published : 2018.12.25

Abstract

We propose an implementation scheme for an optical encryption system with hybrid-pattern random keys. In the encryption process, a pair of random phase keys composed of a white-noise phase key and a structured phase key are positioned in the input plane and Fourier-spectrum plane respectively. The output image is recoverable by digital reconstruction, using the conjugate of the encryption key in the Fourier-spectrum plane. We discuss the system encryption performance when different combinations of phase-key pairs are used. To measure the effectiveness of the proposed method, we calculate the statistical indicators between original and encrypted images. The results are compared to those generated from a classical double random phase encoding. Computer simulations are presented to show the validity of the method.

Keywords

KGHHD@_2018_v2n6_540_f0001.png 이미지

FIG. 1. Flow chart of the proposed scheme: (a) encryption process, (b) decryption process.

KGHHD@_2018_v2n6_540_f0002.png 이미지

FIG. 2. Four SPK patterns: (a) LPK, (b) QPK, (c) SPPK, (d) SQPK.

KGHHD@_2018_v2n6_540_f0003.png 이미지

FIG. 3. Original image.

KGHHD@_2018_v2n6_540_f0004.png 이미지

FIG. 4. Encrypted images (intensity) for different types of SPKs in the SPK+RPK scheme: (a) LPK, (b) QPK, (c) SPPK, (d) SQPK.

KGHHD@_2018_v2n6_540_f0005.png 이미지

FIG. 5. The keys and encrypted image (intensity and phase) for different hybrid-key-pattern combinations: (a)~(d) RPK+ RPK, (e)~(h) RPK+SPK, (i)~(l) SPK+RPK, (m)~(p) SPK+ SPK. The 1st column is KEY1, the 2nd column is KEY2, the 3rd column is the intensity of the encrypted image, and the 4th column is the phase of the encrypted image.

KGHHD@_2018_v2n6_540_f0006.png 이미지

FIG. 6. Decrypted images using partial-error keys for different schemes: (a)~(d) RPK+RPK, (e)~(h) RPK+SPK, (i)~(l) SPK+RPK.

KGHHD@_2018_v2n6_540_f0007.png 이미지

FIG. 7. Relationship between CC and percentage correctness of the key for the four schemes.

KGHHD@_2018_v2n6_540_f0008.png 이미지

FIG. 8. Relationship between CC and percentage of key parameters in error for the RPK+SPK and SPK+SPK schemes.

TABLE 1. Quality evaluation of encrypted images

KGHHD@_2018_v2n6_540_t0001.png 이미지

References

  1. A. Alfalou and C. Brosseau, "Optical image compression and encryption methods," Adv. Opt. Photon. 1, 590-636 (2009).
  2. M. S. Millan, "Advanced optical correlation and digital methods for pattern matching-50th anniversary of Vander Lugt matched filter," J. Opt.-UK 14, 103001 (2012) https://doi.org/10.1088/2040-8978/14/10/103001
  3. W. Chen, B. Javidi, and X. Chen, "Advances in optical security systems," Adv. Opt. Photon. 6, 121-155 (2014)
  4. S. Liu, C. Guo, and J. T. Sheridan, "A review of optical image encryption techniques," Opt. Laser Technol. 57, 327-342 (2014). https://doi.org/10.1016/j.optlastec.2013.05.023
  5. B. Javidi, A. Carnicer, M. Yamaguchi, T. Nomura, E. Perez-Cabre, M. S. Millan, N. K. Nishchal, R. Torroba, J. F. Barrera, W. He, X. Peng, A. Stern, Y. Rivenson, A. Alfalou, C. Brosseau, C. Guo, J. T. Sheridan, G. Situ, M. Naruse, T. Matsumoto, I. Juvells, E. Tajahuerce, J. Lancis, W. Chen, X. Chen, P. W. H. Pinkse, A. P. Mosk, and A. Markman, "Roadmap on optical security," J. Opt.-UK 18, 083001 (2016).
  6. E. Perez-Cabre, M. Cho, and B. Javidi, "Information authentication using photon-counting double-random-phase encrypted images," Opt. Lett. 36, 22-24 (2011). https://doi.org/10.1364/OL.36.000022
  7. I. Lee and M. Cho, "Optical encryption and information authentication of 3D objects considering wireless channel characteristics," J. Opt. Soc. Korea 17, 494-499 (2013). https://doi.org/10.3807/JOSK.2013.17.6.494
  8. M. Cho and B. Javidi, "Three-dimensional photon counting double-random-phase encryption," Opt. Lett. 38, 3198-3201 (2013). https://doi.org/10.1364/OL.38.003198
  9. I. Lee and M. Cho, "Double random phase encryption using orthogonal encoding for multiple-image transmission," J. Opt. Soc. Korea 18, 201-206 (2014). https://doi.org/10.3807/JOSK.2014.18.3.201
  10. A. Vaish and M. Kumar, "Color image encryption using singular value decomposition in discrete cosine Stockwell transform domain," Opt. Appl. 48, 25-38 (2018).
  11. Z. Shao, Y. Shang, Q. Tong, H. Ding, X. Zhao, and X. Fu, "Multiple color image encryption and authentication based on phase retrieval and partial decryption in quaternion gyrator domain," Multimedia Tools Appl. 77, 25821-25840 (2018). https://doi.org/10.1007/s11042-018-5818-7
  12. X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, "Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme," Opt. Laser Eng. 102, 106-111 (2018). https://doi.org/10.1016/j.optlaseng.2017.10.023
  13. H. Xu, W. Xu, S. Wang, and S. Wu, "Phase-only asymmetric optical cryptosystem based on random modulus decomposition," J. Mod. Opt. 65, 1245-1252 (2018). https://doi.org/10.1080/09500340.2018.1431314
  14. K. Ravi, B. Basanta, and K. N. Naveen, "Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition," J. Opt.-UK 20, 015701 (2018). https://doi.org/10.1088/2040-8986/aa9943
  15. J. F. Barrera, R. Henao, and R. Torroba, "Optical encryption method using toroidal zone plates," Opt. Commun. 248, 35-40 (2005). https://doi.org/10.1016/j.optcom.2004.11.086
  16. Y. Xiong, A. He, and C. Quan, "Security analysis of a double-image encryption technique based on an asymmetric algorithm," J. Opt. Soc. Am. A 35, 320-326 (2018). https://doi.org/10.1364/JOSAA.35.000320
  17. M. Liao, W. He, D. Lu, and X. Peng, "Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium," Sci. Rep. 7, 41789 (2017). https://doi.org/10.1038/srep41789
  18. T. Li, Z. Miao, and Y. Shi, "Ciphertext-only attack on phase-shifting interferometery-based encryption," IEEE Photon. J. 9, 1-8 (2017).
  19. W. Qin and X. Peng, "Asymmetric cryptosystem based on phase-truncated Fourier transforms," Opt. Lett. 35, 118-120 (2010). https://doi.org/10.1364/OL.35.000118
  20. M. Khurana and H. Singh, "An asymmetric image encryption based on phase truncated hybrid transform," 3D Res. 8 (2017).
  21. S. K. Gil, "Asymmetric public key cryptography by using logic-based optical processing," J. Opt. Soc. Korea 20, 55-63 (2016). https://doi.org/10.3807/JOSK.2016.20.1.055
  22. H. Yu, J. Chang, X. Liu, C. Wu, Y. He, and Y. Zhang, "Novel asymmetric cryptosystem based on distorted wavefront beam illumination and double-random phase encoding," Opt. Express 25, 8860 (2017). https://doi.org/10.1364/OE.25.008860
  23. H. Chen, C. Tanougast, Z. Liu, and L. Sieler, "Asymmetric optical cryptosystem for color image based on equal modulus decomposition in gyrator transform domains," Opt. Lasers Eng. 93, 1-8 (2017).
  24. L. Yao, C. Yuan, J. Qiang, S. Feng, and S. Nie, "Asymmetric color image encryption based on singular value decomposition," Opt. Lasers Eng. 89, 80-87 (2017). https://doi.org/10.1016/j.optlaseng.2016.06.007
  25. X. Li, M. Zhao, Y. Xing, L. Li, S. T. Kim, X. Zhou, and Q. H. Wang, "Optical encryption via monospectral integral imaging," Opt. Express 25, 31516-31527 (2017). https://doi.org/10.1364/OE.25.031516
  26. T. Zhao, Y. Jiang, and C. Liu, "Demonstration and a practical scheme of the optical asymmetric cryptosystem," Optik 138, 509-515 (2017). https://doi.org/10.1016/j.ijleo.2017.03.013
  27. L. Ma and W. Jin, "Symmetric and asymmetric hybrid cryptosystem based on compressive sensing and computer generated holography," Opt. Commun. 407, 51-56 (2018). https://doi.org/10.1016/j.optcom.2017.08.047
  28. M. Tebaldi, W. D. Furlan, R. Torroba, and N. Bolognini, "Optical-data storage-readout technique based on fractal encrypting masks," Opt. Lett. 34, 316 (2009). https://doi.org/10.1364/OL.34.000316
  29. W. Zamrani, E. Ahouzi, A. Lizana, J. Campos, and M. J. Yzuel, "Optical image encryption technique based on deterministic phase masks," Opt. Eng. 55, 103108 (2016). https://doi.org/10.1117/1.OE.55.10.103108
  30. J. F. Barrera, R. Henao, and R. Torroba, "Optical encryption method using toroidal zone plates," Opt. Commun. 248, 35-40 (2005). https://doi.org/10.1016/j.optcom.2004.11.086
  31. J. F. Barrera, R. Henao, and R. Torroba, "Fault tolerances using toroidal zone plate encryption," Opt. Commun. 256, 489-494 (2005). https://doi.org/10.1016/j.optcom.2005.06.077
  32. S. K. Rajput and N. K. Nishchal, "Asymmetric color cryptosystem using polarization selective diffractive optical element and structured phase mask," Appl. Opt. 51, 5377-5386 (2012). https://doi.org/10.1364/AO.51.005377
  33. C. Lin and X. Shen, "Design of reconfigurable and structured spiral phase mask for optical security system," Opt. Commun. 370, 127-134 (2016). https://doi.org/10.1016/j.optcom.2016.03.021
  34. C. Lin, X. Shen, and M. Lei, "Generation of plaintextindependent private key based on conditional decomposition strategy," Opt. Lasers Eng. 86, 303-308 (2016). https://doi.org/10.1016/j.optlaseng.2016.06.023
  35. H. Singh, "Nonlinear optical double image encryption using random-optical vortex in fractional Hartley transform domain," Opt. Appl. 47, 557-578 (2017).
  36. R. Kumar and B. Bhaduri, "Optical image encryption in Fresnel domain using spiral phase transform," J. Opt.-UK 19, 095701 (2017). https://doi.org/10.1088/2040-8986/aa7cb1
  37. M. R. Abuturab, "Securing multiple information using chaotic spiral phase encoding with simultaneous interference and superposition methods," Opt. Lasers Eng. 98, 1-16 (2017). https://doi.org/10.1016/j.optlaseng.2017.05.001
  38. Q. Chen, X. Shen, S. Dou, C. Lin, and L. Wang, "Topological charge number multiplexing for JTC multiple-image encryption," Opt. Commun. 412, 155-160 (2018). https://doi.org/10.1016/j.optcom.2017.12.015
  39. K. Ravi, B. Basanta, and K. N. Naveen, "Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition," J. Opt.-UK 20, 015701 (2018). https://doi.org/10.1088/2040-8986/aa9943
  40. M. Rafiq Abuturab, "Asymmetric multiple information cryptosystem based on chaotic spiral phase mask and random spectrum decomposition," Opt. Laser Technol. 98, 298-308 (2018). https://doi.org/10.1016/j.optlastec.2017.08.010
  41. M. R. Abuturab, "Color image security system using double random-structured phase encoding in gyrator transform domain," Appl. Opt. 51, 3006-3016 (2012). https://doi.org/10.1364/AO.51.003006
  42. M. R. Abuturab, "Color information security system using discrete cosine transform in gyrator transform domain radial- Hilbert phase encoding," Opt. Lasers Eng. 50, 1209-1216 (2012). https://doi.org/10.1016/j.optlaseng.2012.03.020
  43. H. Singh, A. K. Yadav, S. Vashisth, and K. Singh, "Fully phase image encryption using double random-structured phase masks in gyrator domain," Appl. Opt. 53, 6472 (2014). https://doi.org/10.1364/AO.53.006472
  44. A. K. Yadav, S. Vashisth, H. Singh, and K. Singh, "A phase-image watermarking scheme in gyrator domain using devil's vortex Fresnel lens as a phase mask," Opt. Commun. 344, 172-180 (2015). https://doi.org/10.1016/j.optcom.2015.01.019
  45. S. Liansheng, Z. Bei, N. Xiaojuan, and T. Ailing, "Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain," Opt. Express 24, 499-515 (2016). https://doi.org/10.1364/OE.24.000499
  46. P. Singh, A. K. Yadav, and K. Singh, "Phase image encryption in the fractional Hartley domain using Arnold transform and singular value decomposition," Opt. Lasers Eng. 91, 187-195 (2017). https://doi.org/10.1016/j.optlaseng.2016.11.022
  47. H. Singh, "Cryptosystem for securing image encryption using structured phase masks in fresnel wavelet transform domain," 3D Res. 7 (2016).
  48. H. Singh, "Devil's vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncation in gyrator wavelet transform domain," Opt. Lasers Eng. 81, 125-139 (2016). https://doi.org/10.1016/j.optlaseng.2016.01.014
  49. H. Singh, A. K. Yadav, S. Vashisth, and K. Singh, "Double phase-image encryption using gyrator transforms, and structured phase mask in the frequency plane," Opt. Lasers Eng. 67, 145-156 (2015). https://doi.org/10.1016/j.optlaseng.2014.10.011