DOI QR코드

DOI QR Code

Engine Sound Design for Electric Vehicle through Wavetable Software Synthesizer

웨이브테이블 신디사이징을 이용한 전기자동차 엔진 사운드 디자인

  • Bae, June (Department of Computer Science, The University of Suwon) ;
  • Kim, Jangyoung (Department of Computer Science, The University of Suwon)
  • Received : 2018.10.30
  • Accepted : 2018.11.14
  • Published : 2018.12.31

Abstract

Unlike internal combustion engines, electric cars have little engine sound and very quiet, causing the following problems to occur. First of all, pedestrians are a threat to safety because they can't feel the car approaching. The driver is also unable to recognize how fast his car is driving at a certain speed. To solve these problems, electric cars should be artificially created and reused. This paper examines the problems of the Sampling engine sound currently being used and uses the engine sound to produce a sound engine sound for the solution. The sampling engine sound has some limitations in making natural engine sounds. To overcome this problem, we studied two methods of using software synthesizers. They found subtractive synthsizing and wavetable synthsizing, which compared wavetabe synthsizing with actual engine, sampling and subtractive methods to find the most similar to real engine sound. We found that data usage and production cost are more advantageous than sampling method and subtractive syndication method.

전기자동차는 엔진 소음을 발생시키지 않는다. 엔진 소리가 없으면 보행자의 안전과 운전자의 주행 상태 인지에 문제를 가져온다. 이러한 문제를 피하기 위해 전기자동차 제조업체는 보통 샘플링 방식으로 엔진 소리를 녹음하여 재생하는 방식으로 엔진소리를 만들어 만든다. 그러나 샘플링 방식의 엔진 소리는 자연적인 엔진 소리를 만드는 것에 몇 가지 제한을 가진다. 이 문제를 극복하기 위해 우리는 소프트웨어 신디사이저를 이용하는 두 가지 방법을 연구했다. 그 둘은 감산형(subtractive)신디사이징과 웨이브테이블(wavetable) 신디사이징 방식으로 실제 엔진, 샘플링 방식, 감산형 방식과 비교한 결과 웨이브테이블 신디사이징 방식이 실제 엔진소리와 가장 유사함을 발견했다. 또한 데이터 사용과 제작비용에서 샘플링방식과 감산형 신디사이징 방식에 비해 유리함을 확인했다.

Keywords

HOJBC0_2018_v22n12_1639_f0001.png 이미지

Fig. 1 Structure of Synthesizer [9]

HOJBC0_2018_v22n12_1639_f0002.png 이미지

Fig. 2 Arbitrary wavetable mixing

HOJBC0_2018_v22n12_1639_f0003.png 이미지

Fig. 3 Spectrum Analysis Results Comparison (X:Frequency(Hz),Y:Decibel(db))

Table. 1 Spectrum Analysis Results (Values) (db)

HOJBC0_2018_v22n12_1639_t0001.png 이미지

Table. 2 Spectrum Analysis Results (Error Rate) (db)

HOJBC0_2018_v22n12_1639_t0002.png 이미지

References

  1. M. Dudenhoffer, L. Hause, "Sound Perception Of Electric Vehicles," Auto Tech Review, vol. 2, no. 8, pp. 44-49, Sep. 2013. https://doi.org/10.1365/s40112-013-0391-y
  2. U. Sandberg, "Adding noise to quiet electric and hybrid vehicles," An electric issue. Acoustics Australia, vol. 40, no. 3, pp. 211-220, Mar. 2012.
  3. ANEC, "Silent but dangerous : when absence of noise of cars is a factor of risk for pedestrians," ANEC Position paper, vol. 8, no. 7 , pp. 2, Aug. 2010.
  4. G. D'Amico, S. Lenzi, "Sound for Electric Vehicles," Energy, vol. 1, no.1, pp. 35, Sep. 2010.
  5. T. Braunl, "Synthetic engine noise generation for improving electric vehicle safety," International Journal of. Vehicle Safety, vol. 6, no. 1, pp. 2-4, Mar. 2012.
  6. X. Chai, Q. Wang, Y. Zhao, X. Liu, O. Bai, and Y. Li, "Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion," Computational Biomedical, vol. 2, no. 79, pp. 205-214, Dec. 2016.
  7. B. Han, S. Rho, S. Jun, and E. Hwang, "Music emotion classification and context-based music ecommendation," Multimedia Tools Application, vol. 47, no. 3, pp. 433-460, May 2010. https://doi.org/10.1007/s11042-009-0332-6
  8. G. Marbjerg, "Noise From Electric Vehicles," Literature survey, vol. 56, no. 1, pp. 39-40, Feb. 2013.
  9. J. Bae, J. Kim, "Engine Sound Design for Electric Vehicle by using Software Synthesizer," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 8, pp. 1547-1552, Aug. 2017. https://doi.org/10.6109/JKIICE.2017.21.8.1547
  10. J. Bae, J. Kim, and Y. Yang "Physical modeling synthesizing of 25 strings Gayageum using white noise as exciter," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 5, pp. 740-746, May 2018. https://doi.org/10.6109/JKIICE.2018.22.4.740
  11. Ju Chan Na, "Optimization in Cooperative Spectrum Sensing," Asia-pacific Journal of Convergent Research Interchange, vol. 3, no. 1, pp. 19-31, March 2017.
  12. K. Kumar, "Estimation of Traffic Management and Road Safety," Asia-pacific Journal of Convergent Research Interchange, Journal of the Korea Institute of Information and Communication Engineering, vol. 3, no. 2, pp. 21-28, June 2017.