References
- Aksoy, C.O. (2008), "Chemical injection application at tunnel service shaft to prevent ground settlement induced by groundwater drainage: A case study", International Journal of Rock Mechanics and Mining Sciences, Vol. 45, No. 3, pp. 376-383. https://doi.org/10.1016/j.ijrmms.2007.06.005
- ASTM. D. 2850-03a (2007), Standard Test Methods for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils, ASTM International, West Conshohocken, PA, 2003, DOI: 10.1520/D2850-03AR07.
- ASTM. D. 4318-93 (1994), Standard test method for liquid limit, plastic limit and plasticity index of soils. Annual Book of ASTM Standards 4, pp. 551-561.
- ASTM. D. 6913-04 (2009), Standard test methods for particle-size distribution (gradation) of soils using sieve analysis.
- Center for utility tunnel (2015), Development of core technology for urban small-diameter utility tunnel construction.
- Goh, A.T.C. (1994), "Estimating basal-heave stability for braced excavations in soft clay", Journal of Geotechnical Engineering, Vol. 120, No. 8, pp. 1430-1436. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1430)
- Goh, A.T.C. (2017), "Basal heave stability of supported circular excavations in clay", Tunnelling and Underground Space Technology, Vol. 61, pp. 145-149. https://doi.org/10.1016/j.tust.2016.10.005
- Hong, E.S., Cho, G.C., Baak, S.H., Jun, H.W. (2016), "Rapid construction technique development for vertical shafts of utility tunnels", KTA 2016 Annual Spring Conference, Seoul, Korea, pp. 129-130.
- Hsieh, P.G., Ou, C.Y., Liu, H.T. (2008), "Basal heave analysis of excavations with consideration of anisotropic undrained strength of clay", Canadian Geotechnical Journal, Vol. 45, No. 6, pp. 788-799. https://doi.org/10.1139/T08-006
- Khatri, V.N., Kumar, J. (2010), "Stability of an unsupported vertical circular excavation in clays under undrained condition", Computers and Geotechnics, Vol. 37, No. 3, pp. 419-424. https://doi.org/10.1016/j.compgeo.2009.11.001
- Kim, D.S., Kim, N.R., Choo, Y.W., Cho, G.C. (2013), "A newly developed state-of-the-art geotechnical centrifuge in Korea", KSCE Journal of Civil Engineering, pp. 77-84.
- Kim, K.Y., Lee, D.S., Jeong, S.S. (2012), "Analysis of earth pressure acting on vertical circular shaft considering aching effect (I): a study on centrifuge model tests", Journal of the Korean Geotechnical Society, Vol. 28, No. 2, pp. 23-31. https://doi.org/10.7843/kgs.2012.28.2.23
- Schofield, A.N. (1980), "Cambridge geotechnical centrifuge operations", Geotechnique, Vol. 30, No. 3, pp. 227-268. https://doi.org/10.1680/geot.1980.30.3.227
- Shin, Y.W., Park, T.S., Lee, I.K. (2005), "A method of estimating earth pressure on a shaft wall and ground settlement caused by excavation", KSCE Tunnel Committee Special Conference, pp. 151-167.
- Shin, Y.W., Sagong, M. (2007), "A rational estimating method of the earth pressure on a shaft wall considering the shape ratio", Journal of Korean Tunnelling and Underground Space Association, Vol. 9, No. 2, pp. 143-155.
- Taylor, R.N. (1995), "Centrifuges in modelling: principles and scale effects", Geotechnical Centrifuge Technology, pp. 19-33.
- Terzaghi, K., Peck, R.B. (1948), Soil mechanics in engineering practice, John Wile and Sons, New York.
- Thielicke, W., Stamhuis, E.J. (2014), "PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB", Journal of Open Research Software, Vol. 2, No. 1, pp. 30.