DOI QR코드

DOI QR Code

도시홍수예경보를 위한 shot noise process 기반 강우-유출 모형 개발

Development of a shot noise process based rainfall-runoff model for urban flood warning system

  • 강민석 (고려대학교 공과대학 건축사회환경공학부) ;
  • 유철상 (고려대학교 공과대학 건축사회환경공학부)
  • Kang, Minseok (School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University) ;
  • Yoo, Chulsang (School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University)
  • 투고 : 2017.10.17
  • 심사 : 2017.11.13
  • 발행 : 2018.01.31

초록

본 연구에서는 도시유역에서의 실시간 홍수예경보 목적으로 shot noise process 기반의 강우-유출모형을 제안하였다. 제안된 모형은 각 소유역 별 첨두치, 감쇄상수 및 지체시간으로 결정되는 shot noise의 합으로 표현되며, 기존 강우-유출 모형과는 달리 각 소유역 별 유출량이 독립적으로 유역 출구에 도달하는 구조를 가지고 있다. 제안된 모형의 매개변수는 통상 경험식을 가지고 결정하는 소유역의 집중시간과 저류상수 및 관로에서의 도달시간과 저류상수를 이용하여 쉽게 결정될 수 있는 것으로 확인되었다. 본 연구에서 제안된 모형은 중동 빗물펌프장 배수유역, 구로1 빗물펌프장 배수유역, 대림2 빗물펌프장 배수유역에서 관측된 총 3개의 호우사상에 적용하여 그 성능을 평가하였다. 그 결과를 정리하면 다음과 같다. (1) 본 연구에서 제안된 shot noise process 기반 단위 응답함수는 기존 단위 응답함수와 달리 강우 지속기간에 관계없이 동일한 모양을 갖는다. (2) 제안된 모형의 특성상 강우의 시간간격이 짧을수록 수렴된 결과를 얻을 수 있다. 따라서 도시유역의 특성을 감안할 때 1분이 가장 적절한 것으로 판단된다. (3) Shot noise process 기반 1분 단위 응답함수를 실제 호우사상에 적용하여 유출해석을 수행한 결과, 모의된 유출 수문곡선과 관측 값이 매우 유사한 것으로 나타났다. 이러한 결과는 도시유역에서의 유출해석을 수행하는데 있어 제안된 유출모형이 충분한 적용성이 있다는 것을 보여준다.

This study proposed a rainfall-runoff model for the purpose of real-time flood warning in urban basins. The proposed model was based on the shot noise process, which is expressed as a sum of shot noises determined independently with the peak value, decay parameter and time delay of each sub-basin. The proposed model was different from other rainfall-runoff models from the point that the runoff from each sub-basin reaches the basin outlet independently. The model parameters can be easily determined by the empirical formulas for the concentration time and storage coefficient of a basin and those of the pipe flow. The proposed model was applied to the total of three rainfall events observed at the Jungdong, Guro 1 and Daerim 2 pumping stations to evaluate its applicability. Summarizing the results is as follows. (1) The unit response function of the proposed model, different from other rainfall-runoff models, has the same shape regardless of the rainfall duration. (2) The proposed model shows a convergent shape as the calculation time interval becomes smaller. As the proposed model was proposed to be applied to urban basins, one-minute of calculation time interval would be most appropriate. (3) Application of the one-minute unit response function to the observed rainfall events showed that the simulated runoff hydrographs were very similar to those observed. This result indicates that the proposed model has a good application potential for the rainfall-runoff analysis in urban basins.

키워드

참고문헌

  1. Ahn, S. J., and Kim, J. G. (1999). "Runoff analysis of urban area using urban runoff models." Journal of Korea Water Resources Association, KWRA, Vol. 32, No. 4, pp. 479-488.
  2. Andjelkovic, I. (2001). Guidelines on non-structural measures in urban flood management. International Hydrological Programme (IHP), UNESCO, Paris.
  3. Bernier, J., Morlat, G., O'Connell, P. E., O'Donnell, T., Sneyers, R., Delaporte, P. J., Elston, D., and Borgman, L. E. (1970). "Inventaire des modeles de processus stochastiques applicables a la description des debits journaliers des rivieres." Revue de l'institut International de Statistique, ISI, Vol. 38, No. 1, pp. 49-104. https://doi.org/10.2307/1402324
  4. Bourque, L. B., Siegel, J. M., Kano, M., and Wood, M. M. (2006). "Weathering the storm: the impact of hurricanes on physical and mental health." The Annals of the American Academy of Political and Social Science, SAGE, Vol. 604, No. 1, pp. 129-151. https://doi.org/10.1177/0002716205284920
  5. Claps, P., and Murrone, F. (1994). "Optimal parameter estimation of conceptually-based streamflow models by time series aggregation." In Stochastic and statistical methods in hydrology and environmental engineering, Springer, pp. 421-434.
  6. Claps, P., Giordano, A., and Laio, F. (2005). "Advances in shot noise modeling of daily streamflows." Advances in Water Resources, Elsevier, Vol. 28, No. 9, pp. 992-1000. https://doi.org/10.1016/j.advwatres.2005.03.008
  7. Clark, C. O. (1945). "Storage and the unit hydrograph." Transactions of the American Society of Civil Engineers, ASCE, Vol. 110, pp. 1419-1446.
  8. Cowpertwait, P. S. P., and O'Connell, P. E. (1992). "A Neyman-Scott shot noise model for the generation of daily streamflow time series." Advances in Theoretical Hydrology-A Tribute to James Dooge, Elsevier, pp. 75-94.
  9. Habitat, U. N. (2007). Global report on human settlements 2007: Enhancing urban safety and security. Earthscan, London.
  10. Hutton, J. L. (1990). "Non-negative time series models for dry river flow." Journal of Applied Probability, APT, Vol. 27, No. 1, pp. 171-182. https://doi.org/10.2307/3214604
  11. Jeong, J. H., and Yoon, Y. N. (2009). Water resources design practice. Goomibook, Seoul.
  12. Johnstone, D., and Cross, W. P. (1949). Elements of applied hydrology. Ronald Press, New York.
  13. Jonkman, S. N., Maaskant, B., Boyd, E., and Levitan, M. L. (2009). "Loss of life caused by the flooding of New Orleans after hurricane Katrina: analysis of the relationship between flood characteristics and mortality." Risk Analysis, Springer, Vol. 29, No. 5, pp. 676-698. https://doi.org/10.1111/j.1539-6924.2008.01190.x
  14. Jung, S. W. (2005). Development of empirical formulas for the parameter estimation of Clark's watershed flood routing model. Ph. D. dissertation, Korea University, Seoul, Korea.
  15. Kerby, W. S. (1959). "Time of concentration for overland flow." Civil Engineering, ASCE, Vol. 29, No. 3, pp. 174.
  16. Kirpich, P. Z. (1940). "Time of concentration of small agricultural watersheds." Civil Engineering, ASCE, Vol. 10, No. 6, pp. 362.
  17. Konecny, F. (1992). "On the shot-noise streamflow model and its applications." Stochastic Hydrology and Hydraulics, Springer, Vol. 6, No. 4, pp. 289-303. https://doi.org/10.1007/BF01581622
  18. Konrad, C. P. (2003). Effects of urban development on floods. USGS, Reston, Virginia.
  19. Lai, S. H., Ab, G. A., Zakaria, N. A., Leow, C. S., Chang, C. K., and Yusof, M. F. (2000). "Application of SWMM for urban stormwater management: a case study with modelling." Management, Vol. 2000, pp. 1-9.
  20. Laurenson, E. M. (1962). Hydrograph synthesis by runoff routing. University of New South Wales, Water Research Laboratory, Manly Vale, NSW.
  21. Lee, J. S., Lee, J. J., and Son, K. I. (1997). "A comparative study of conceptual models for rainfall-runoff relationship in small to medium sized watershed-Application to Wi stream basin-." Journal of Korea Water Resources Association, KWRA, Vol. 30, No. 3, pp. 279-291.
  22. Lee, J. T. (1998). "Urban runoff and water quality model." Journal of Korea Water Resources Association, KWRA, Vol. 31, No. 6, pp. 709-725.
  23. Linsley, R. K. (1945). "Discussion of storage and the unit hydrograph by C. O. Clark." Transactions of the American Society of Civil Engineers, ASCE, Vol. 110, pp. 1452-145.
  24. Maitland, D., Phillips, B. C., Goyen, A. G., and Thompson, G. R. (1999). "Integrated modelling of urban drainage systems using XP-SWMM32." Proceedings the Eighth International Conference on Urban Storm Drainage, Sydney, Australia, pp. 1887-1895.
  25. Mehedi, H. T., Imran, K., and Adil, H. (2017). "Application of SWMM for analysis of flash floods in urban areas: a case study for Chaktai Khal watershed in Chittagong." Proceedings of 6th International Conference on Water & Flood Management, Bangladesh, Vol. 6, pp. 1-9.
  26. Moon, Y. I. (2014) A study on the construction of the Dorimcheon flood prediction system. Seoul.
  27. Morgali, J. R., and Linsley, R. K. (1965). "Computer analysis of overland flow." Journal of the Hydraulics Division, ASCE, Vol. 91, No. 3, pp. 81-100.
  28. Morlando, F., Cimorelli, L., Cozzolino, L., Mancini, G., Pianese, D., and Garofalo, F. (2016). "Shot noise modeling of daily streamflows: A hybrid spectral-and time-domain calibration approach." Water Resources Research, Wiley, Vol. 52, No. 6, pp. 4730-4744. https://doi.org/10.1002/2015WR017613
  29. Murrone, F., Rossi, F., and Claps, P. (1997). "Conceptually-based shot noise modeling of streamflows at short time interval." Stochastic Hydrology and Hydraulics, Springer, Vol. 11, No. 6, pp. 483-510. https://doi.org/10.1007/BF02428430
  30. O'Connell, P. E. (1977). "Shot noise models in synthetic hydrology." Mathematical Models for Surface Water Hydrology, Wiley, pp. 19-26.
  31. O'Connell, P. E., and Jones, D. A. (1979). "Some experience with the development of models for the stochastic simulation of daily flows." Inputs for Risk Analysis in Water Systems, Water Resources Publications, pp. 281-314.
  32. Park, S., and Lee, J. (2008). "Determination of surface roughness consider the landuse and classification method." Proceedings 34th Annual Conference And 2008 Civil Exposition, KSCE, Daejeon, Vol. 2008, No. 10, pp. 564-567.
  33. Ponce, V. M. (1989). Engineering hydrology: principles and practices. Prentice-Hall, New Jersey.
  34. Price, R. K., and Vojinovic, Z. (2008). "Urban flood disaster management." Urban Water Journal, Taylor & Francis, Vol. 5, No. 3, pp. 259-276. https://doi.org/10.1080/15730620802099721
  35. Russell, S. O., Sunnell, G. J., and Kenning, B. F. (1979). "Estimating design flows for urban drainage." Journal of the Hydraulics Division, ASCE, Vol. 105, No. 1, pp. 43-52.
  36. Rziha, F. (1876). Eisenbahn-Unter-und Oberbau (Vol. 1). Verlag der KK Hof-und Staatsdr., Vienna, Austria.
  37. Sabol, G. V. (1988). "Clark unit hydrograph and R-parameter estimation." Journal of Hydraulic Engineering, ASCE, Vol. 114, No. 1, pp. 103-111. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:1(103)
  38. Shin, H., Park, Y., and Hong, I. (2007). "The study on the development of flood prediction and warning system at ungaged coastal urban area." Journal of Korea Water Resources Association, KWRA, Vol. 40, No. 6, pp. 447-458. https://doi.org/10.3741/JKWRA.2007.40.6.447
  39. Sim, O. B. (2008). "Characteristics and development strategies of the urban flood damage in Korea." Water for Future, KWRA, Vol. 41, No. 9, pp. 41-46.
  40. Son, A. L., Kim, B., and Han, K. Y. (2015). "A study on prediction of inundation area considering road network in urban area." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 35, No. 2, pp. 307-318. https://doi.org/10.12652/Ksce.2015.35.2.0307
  41. Sullivent, E. E., West, C. A., Noe, R. S., Thomas, K. E., Wallace, L. D., and Leeb, R. T. (2006). "Nonfatal injuries following Hurricane Katrina-New Orleans, Louisiana, 2005." Journal of Safety Research, Elsevier, Vol. 37, No. 2, pp. 213-217. https://doi.org/10.1016/j.jsr.2006.03.001
  42. Tingsanchali, T. (2012). "Urban flood disaster management." Procedia Engineering, Elsevier, Vol. 32, pp. 25-37. https://doi.org/10.1016/j.proeng.2012.01.1233
  43. Todorovic, P., and Woolhiser, D. A. (1987). "A shot-noise model of streamflow." In Flood Hydrology, Springer, pp. 143-163.
  44. USDA SCS (1975). Urban hydrology for small watersheds. USDA SCS, Washington, D.C.
  45. Walesh, S. G. (1989). Urban surface water management. Wiley, N.J.
  46. Weiss, G. (1973). Filtered poisson processes as models for daily streamflow data. Ph. D. dissertation, Imperial College London, London, United Kingdom.
  47. Weiss, G. (1977). "Shot noise models for the generation of synthetic streamflow data." Water Resources Research, Wiley, Vol. 13, No. 1, pp. 101-108. https://doi.org/10.1029/WR013i001p00101
  48. Yoon, S. Y., and Hong, I. P. (1995). "Improvement of the parameter estimating method for the Clark model."
  49. Yoon, S., and Lee, B. (2016). "Urban flood prediction technology development." Water for Future, KWRA, Vol. 49, No. 9, pp. 17-24.
  50. Yoon, T. H., Kim, S. T., and Park, J. W. (2005). "On redefining of parameters of Clark model." Journal of Korean Society of Civil Engineers, KSCE, Vol. 25, No. 3B, pp. 181-187.