DOI QR코드

DOI QR Code

Effects of Methanol Extracts from Diospyros malabarica Stems on Growth and Biofilm Formation of Oral Bacteria

인도감나무 줄기 추출물이 구강미생물의 생육과 바이오필름 생성에 미치는 영향

  • Kim, Hye Soo (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Kwon, Hyun Sook (National Development Institute of Korean Medicine) ;
  • Kim, Chul Hwan (Freshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological Resources) ;
  • Lee, Sang Woo (International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Sydara, Kongmany (Institute of Traditional Medicine, Ministry of Health, Vientiane Capital) ;
  • Cho, Soo Jeong (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology)
  • Received : 2017.12.26
  • Accepted : 2018.01.16
  • Published : 2018.01.30

Abstract

This study was conducted to investigate the potential of medicinal plants as oral health materials derived from natural products. Among the extracts from 200 medicinal plants grown in Nepal, Laos, Mongolia, Bangladesh, Vietnam, and China, stem extracts from Diospyros malabarica (1 mg/disc) showed the highest antibacterial activity against Porphyromonas gingivalis ATCC33277 and Streptococcus mutans ATCC25175. The D. malabarica stem extracts showed antibacterial activity similar to chlorhexidine, sodium lauryl sulfate, and triclosan, which were used as a positive control, as well as higher antibacterial activity against S. mutans ATCC25175 than P. gingivalis ATCC33277. The D. malabarica stem extracts showed bactericidal action (MBC, 0.4 mg/ml) against P. gingivalis ATCC33277 and bacteriostatic action against S. mutans ATCC25175. The biofilm production rate of S. mutans ATCC25175 and the expression of the comX gene associated to biofilm formation in the cultures treated with 0.2-1.0 mg/ml of D. malabarica stem extracts were suppressed in a concentration-dependent manner. Based on the above results, it can be concluded that D. malabarica stem extracts can be used as oral health material derived from natural materials, as demonstrated by the bacteriostatic action and inhibition of biofilm formation against S. mutans ATCC25175.

본 연구는 천연물유래 구강건강소재로써 약용작물의 이용 가능성을 알아보기 위해 수행되었으며 네팔, 라오스, 몽골, 방글라데시, 베트남, 중국 등지에 자생하는 200여 종의 약용작물로부터 추출한 메탄올 추출물 중 인도감나무 줄기 추출물(1 mg/disc)이 P. gingivalis ATCC33277와 S. mutans ATCC25175에 대해 가장 우수한 항균활성을 나타내었으며 양성대조구로 사용한 chlorhexidine, sodium lauryl sulfate, triclosan과 유사한 항균활성을 나타내었다. 인도감나무 줄기 추출물은 P. gingivalis ATCC33277에 비해 S. mutans ATCC25175에 대해 높은 항균활성을 나타내었으며 P. gingivalis ATCC33277에 대해서는 살균작용(MBC, 0.4 mg/ml)을, S. mutans ATCC25175에 대해서는 정균작용을 하는 것으로 확인되었다. 인도감나무 줄기 추출물이 0.2-1.0 mg/ml 농도로 처리된 배양액에서 S. mutans ATCC25175의 바이오필름 생성율과 바이오필름 생성관련 유전자 comX의 발현은 추출물의 농도가 높아질수록 억제되는 것을 확인할 수 있었다. 이상의 결과를 종합하면 인도감나무 줄기 추출물은 치아우식증 원인균인 S. mutans ATCC25175에 대한 정균작용과 바이오필름 생성 억제능이 우수하기 때문에 천연물유래 구강건강소재로써 이용 가능성이 높을 것으로 판단된다.

Keywords

References

  1. Adolfsson, E. M., Pettersson, M., Parkkonen, J. and Sturve, J. 2002. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46, 1485-1489. https://doi.org/10.1016/S0045-6535(01)00255-7
  2. Bakaletz, L. O. 2004. Developing animal models for polymicrobial diseases. Nat. Rev. Microbiol. 2, 552-568. https://doi.org/10.1038/nrmicro928
  3. Burne, R. A. 1998. Oral Streptococci products of their environment. J. Dent. Res. 77, 445-452. https://doi.org/10.1177/00220345980770030301
  4. Cramton, S. E., Gerke, C., Schnell, N. F., Nichols, W. W. and Gotz, F. 1999. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67, 5427-5433.
  5. Chen, C. P., Lin, C. C. and Tsuneo, N. 1989. Screening of Taiwanese crude drugs for antibacterial activity against Streptococcus mutans. J. Ethnopharmacol. 27, 285-295. https://doi.org/10.1016/0378-8741(89)90003-2
  6. Choi, M. S. and Ahn, K. S. 2014. Antibacterial effect of bamboo charcoal on Streptococcus mutans. J. Kor. Soc. Dent. Hyg. 14, 95-100. https://doi.org/10.13065/jksdh.2014.14.01.95
  7. Davidson, P. M. and Parish, M. E. 1989. Methods for testing the efficacy of food antimicrobials. Food Technol. 43, 148-152.
  8. Huh, M. K. and Kim, H. J. 2014. Antibacterial effect on leaf-extract from Nelumbo nucifera against oral microorganism. J. Kor. Soc. Dent. Hyg. 14, 117-122. https://doi.org/10.13065/jksdh.2014.14.01.117
  9. Iauk, L., Lo Bue, A. M., Milazzo, I., Rapisarda, A. and Blandino, G. 2003. Antibacterial activity of medicinal plant extracts against periodontopathic bacteria. Phytother. Res. 17, 599-604. https://doi.org/10.1002/ptr.1188
  10. Kim, H. E. 2014. Change of paradigms in caries-associated bacteria in the caries process: ecological perspectives. J. Dent. Hyg. Sci. 14, 87-93.
  11. Kim, S. K., Shin, M. K., Auh, Q. S., Lee, J. Y., Hong, J. P. and Chun, Y. H. 2007. Effect of phytoncide on Porphyromonas gingivalis. J. Oral. Med. Pain. 32, 137-150.
  12. Kumar, S., Shukla, Y. N., Lavania, U. C., Sharma, A. and Singh, A. K. 1997. Medicinal and aromatic plants: prospects for India. J. Med. Arom. Pl. Sc. 19, 361-365.
  13. Kuramitsu, H. K., He, X., Lux, R., Anderson, M. H. and Shi, W. 2007. Interspecies interactions within oral microbial communities. Microbiol. Mol. Biol. Rev. 71, 653-670. https://doi.org/10.1128/MMBR.00024-07
  14. Lee, D. H., Yu, H. H., Jung, S. Y., Moon, H. D., Kim, S. M., Jeon, B. H. and You, Y. O. 2007. Anticariogenic preoperties of the ethanol extract of Tribuli fructus against Streptococcus mutans. J. Physiol. Pathol. Kor. Med. 21, 1148-1153.
  15. Lee, Y. S., Jang, K. A. and Cha, J. D. 2012. Synergistic anti bacterial effect between silibinin and antibiotics in oral bacteria. J. Biomed. Biotechnol. 2012, 1-7.
  16. Li, Y. H., Tang, N., Aspiras, M. B., Lau, P. C. Y., Lee, J. H., Ellen, R. P. and Cvitkovitch, D. G. 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184, 2699-2708. https://doi.org/10.1128/JB.184.10.2699-2708.2002
  17. Lin, M., Savaiano, D. and Harlande, S. 1991. Influence of nonfermented dairy products containing bacterial stater cultures on lactose maldigestion in humans. J. Dairy Sci. 74, 87-95. https://doi.org/10.3168/jds.S0022-0302(91)78147-2
  18. Loo, C. Y., Corliss, D. A. and Ganeshkumar, N. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182, 1374-1382. https://doi.org/10.1128/JB.182.5.1374-1382.2000
  19. Mahesh, S. R., Mohan, G. K., Namdev, Y. G. and Sanjay, J. S. 2013. Evaluation of anti-diarrheal activity of Diospyros malabarica bark extract. Bangladesh J. Pharmacol. 8, 49-53.
  20. Park, K. M., You, J. S., Lee, H. Y., Baek, N. I. and Hwang, J. K. 2003. Kuwanon G: an antibacterial agent from the root bark of Morus alba against oral pathogens. J. Ethnophpharmacol. 84, 181-185. https://doi.org/10.1016/S0378-8741(02)00318-5
  21. Poureslami, H. 2012. The effects of plant extracts on dental plague and caries. MY.(ed.). Croatia: In tech. 2012, 96-402.
  22. Pranjal, S. and Debabrat, B. 2014. Phytochemical analysis and antioxidant activity of Gardenia jasminoides ellis and Diospyros malabarica kostel. Int. J. Pharm. Bio. Sci. 5, 199-204.
  23. Pratt, L. A. and Kolter, R. 1999. Genetic analyses of bacterial biofilm formation. Curr. Opin. Microbiol. 2, 598-603. https://doi.org/10.1016/S1369-5274(99)00028-4
  24. Ramsewak, R. S., Nair, M. G., Stommel, M. and Selanders, L. 2003. In vitro antagonistic activity of monoterpenes and their mixtures against 'toe nail fungus' pathogens. Phytother. Res. 17, 376-379. https://doi.org/10.1002/ptr.1164
  25. Rule, K. L., Ebbett, V. R. and Vikesland, P. J. 2005. Formation of chloroform and chlorinated organics by free-chlorinemediated oxidation of triclosan. Environ. Sci. Technol. 39, 3176-3185. https://doi.org/10.1021/es048943+
  26. Stoodly, P., Sauer, K., Davies, D. G. and Costerton, J. W. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187-209. https://doi.org/10.1146/annurev.micro.56.012302.160705
  27. Stepanovic, S., Vukovic, D., Hola, V., Bonaventura, G., Djukic, S., Cirkovic, I. and Ruzicka, F. 2007. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. APMIS. 115, 891-899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
  28. Stewart, P. S. and Costerton, J. W. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358, 135-138. https://doi.org/10.1016/S0140-6736(01)05321-1
  29. Zhou, L., Ding, Y., Chen, W., Zhang, P., Chen, Y. and Lv, X. 2013. The in vitro study of ursolic acid and oleanolic acid inhibiting cariogenic microorganisms as well as biofilm. Oral Dis. 19, 494-500. https://doi.org/10.1111/odi.12031