DOI QR코드

DOI QR Code

히스티딘으로 표지된 람다 박테리오파아지 꼬리 단백질 J와 대장균 K-12와의 결합

Binding of the His-tagged Tail Protein J of Bacteriophage Lambda with Escherichia coli K-12

  • 신혜자 (동서대학교 에너지생명공학부 에너지환경공학전공)
  • Shin, Hae Ja (Division of Energy and Bio-engineering, Dongseo University)
  • 투고 : 2017.10.09
  • 심사 : 2017.12.19
  • 발행 : 2018.01.30

초록

본 연구에서는 미생물 검출용 바이오센서 제작을 위해 재조합 람다 파아지 꼬리 단백질 J을 센싱 요소로 활용가능한지를 조사하였다. 융합 단백질의 입체 장애를 최소화하기 위해 J 단백질 절편의 N-말단을 6X His-tag로 융합하고 HisTALONTM 컬럼으로 정제하였다. 정제 단백질은 약 38 kDa 크기를 SDS-PAGE에서 나타내며 anti-His 단클론 항체와 반응하였다. Anti-His 단클론 항체는 6HN-J를 처리한 E. coli K-12와 특이적으로 결합하나 BSA 처리하거나 6HN-J 처리한 다른 미생물들(Salmonella typhimurium, Bacillus subtilis, Pseudomonas aeruginosa)과는 결합되지 않음을 보여주었다. 또한 정제 단백질과 숙주세포의 결합은 온전한 람다 파아지의 in vivo 숙주 표면 흡착을 약 $1{\mu}g/ml$ 단백질 농도에서 50%, $25{\mu}g/ml$ 단백질 농도에서 거의 완전히 방해하였다. 결론적으로 재조합 6HN-J 단백질은 탁월한 선택성과 선별성으로 인해 바이오센서의 제작에서 센싱 요소로 활용 가능함을 시사한다.

Detection of pathogenic microorganisms takes several days by conventional methods. It is necessary to assess microorganisms in a timely manner to reduce the risk of spreading infection. For this purpose, bacteriophages are chosen for use as a biosensing tool due to their host specificity, wide abundance, and safety. However, their lytic cycle limits their efficacy as biosensors. Phage proteins involved in binding to bacteria could be a robust alternative in resolving this drawback. Here, a fragment of tail protein J (residues 784 to 1,132) of phage lambda fused with 6X His-tag (6HN-J) at its N-terminus was cloned, overexpressed, purified, and characterized for its binding with microorganisms. The purified protein demonstrated a size of about 38 kDa in sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) and bound with anti-His monoclonal antibodies. It bound specifically to Escherichia coli K-12, and not Salmonella typhimurium, Bacillus subtilis, or Pseudomonas aeruginosa in dot blotting. Binding of the protein to E. coli K-12 inhibited about 50% of the in vivo adsorption of the phage lambda to host cells at a concentration of $1{\mu}g/ml$ 6HN-J protein and almost 100% at $25{\mu}g/ml$ 6HN-J. The results suggest that a fusion viral protein could be utilized as a biosensing element (e.g., protein chips) for detecting microorganisms in real time.

키워드

참고문헌

  1. Abdel-Hamid, I., Ghindidlis, A. L., Atanasov, P. and Wilkins, E. 1999. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 14, 309-316. https://doi.org/10.1016/S0956-5663(99)00004-4
  2. Balasubramanian, S., Sorokulova, I. B., Vodyanoy, V. J. and Simonian, A. L. 2007. Lytic phage as a specific and selective probe for detection of Staphylococcus aureus-A surface plasmon resonance spectroscopic study. Biosens. Bioelectron. 22, 948-955. https://doi.org/10.1016/j.bios.2006.04.003
  3. Belkin, S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6, 206-212. https://doi.org/10.1016/S1369-5274(03)00059-6
  4. Dover, J. E., Hwang, G. M., Mullen, E. H., Prorok, B. C. and Suh, S. J. 2009. Recent advances in peptide probe-based biosensors for detection of infectious agents. J. Microbiol. Methods 78, 10-19. https://doi.org/10.1016/j.mimet.2009.04.008
  5. D'Souza, S. F. 2001. Microbial biosensors. Biosens. Bioelectron. 16, 337-353. https://doi.org/10.1016/S0956-5663(01)00125-7
  6. Dutt, S., Tanha, J., Evoy, S. and Singh, A. 2013. Immobilization of P22 bacteriophage tailspike protein on Si surface for optimized Salmonella capture. J. Anal. Bioanal. Tech. S7, doi:10.4172/ 2155-9872.S7-007.
  7. Dwivedi, H. P. and Jaykus, L. A. 2011. Detection of pathogens in foods: the current state-of-the-art and future directions. Crit. Rev. Microbiol. 37, 40-63. https://doi.org/10.3109/1040841X.2010.506430
  8. Elsholz, B., Worl, R., Blohm, L., Albers, J., Feucht, H., Grunwald, T., Jürgen, B., Schweder, T. and Hintsche, R. 2006. Automated detection and quantitation of bacterial RNA by using elelctrical microarrays. Anal. Chem. 78, 4794-4802. https://doi.org/10.1021/ac0600914
  9. Huang, S., Li, S. Q., Yang, H., Johnson, M., Wan, J., Chen, I., Petrenko, V. A., Barbaree, J. M. and Chin, B. A. 2008. Optimization of phage-based magnetoelastic biosensor performance. Sens. Transducers J. 3, 87-96.
  10. Ilic, B., Czaplewski, D., Craighead, H. G., Neuzil, P., Campagnolo, C. and Batt, C. 2000. Mechanical resonant immunospecific biological detector. Appl. Phys. Lett. 77, 450-452. https://doi.org/10.1063/1.127006
  11. Ivnitski, D., Ihab, A. H., Plamen, A. and Ebtisam, W. 1999. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 1, 599-624.
  12. Jelinek, R. and Kolusheva, S. 2004. Carbohydrate biosensors. Chem. Rev. 104, 5987-6015. https://doi.org/10.1021/cr0300284
  13. Kropinski, A. M., Arutyunov, D., Foss, M., Cunningham, A., Ding, W., Singh, A., Pavlov, A. R., Henry, M., Evoy, S., Kelly, J. and Szymanski, C. M. 2011. Genome and proteome of Campylobacter jejuni bacteriophage NCTC 12673. Appl. Environ. Microbiol. 77, 8265-8271. https://doi.org/10.1128/AEM.05562-11
  14. Kulagina, N. V., Lassman, M. E., Ligler, F. S. and Taitt, C. R. 2005. Antimicrobial peptides for detection of bacteria in biosensor assays. Anal. Chem. 77, 6504-6508. https://doi.org/10.1021/ac050639r
  15. Lazcka, O., Del, Campo, F. J. and Munoz, F. X. 2007. Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22, 1205-1217. https://doi.org/10.1016/j.bios.2006.06.036
  16. Lee, D. Y., Jeong, I. Y., Park, D. S. and Shin, H. J. 2014. Electrochemical biosensing of salicylate by recombinant Escherichia coli cells immobilized in polyvinyl alcohol beads. Sens. Materials 26, 665-675.
  17. Sambrook, J., Fritsch, E. F. and Maniatis, T. 2001. Molecular cloning: A Laboratory Manual, third ed. Cold Spring Harbor, New York.
  18. Schirmer, T., Keller, T. A., Wang, Y. F. and Rosenbusch, J. P. 1995. Structural basis of sugar translocation through maltoporin channels at 3.1 A resolution. Science 267, 512-514. https://doi.org/10.1126/science.7824948
  19. Shin, H. J. 2011. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution. Appl. Microbiol. Biotechnol. 89, 867-877. https://doi.org/10.1007/s00253-010-2990-8
  20. Shin, H. J., Park, H. H. and Lim, W. K. 2005. Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J. Biotechnol. 119, 36-43. https://doi.org/10.1016/j.jbiotec.2005.06.002
  21. Singh, A., Glass, N., Tolba, M., Brovko, L., Griffiths, M. and Evoy, S. 2009. Immbobilization of bacteriophage on gold surfaces for the specific capture of pathogens. Biosens. Bioelectron. 24, 3645-3651. https://doi.org/10.1016/j.bios.2009.05.028
  22. Singh, A., Arya, S. K., Glass, N., Hanifi-Moghaddam, P., Naidoo, R., Szymanski, C. M., Tanha, J. and Evoy, S. 2010. Bacteriophage tailspike proteins as molecular probes for sensitive and selective bacterial detection. Biosens. Bioelectron. 26, 131-138. https://doi.org/10.1016/j.bios.2010.05.024
  23. Singh, A., Arutyunov, D., McDermott, M. T., Szymanski, C. M. and Evoy, S. 2011. Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe. Analyst 136, 4780-4786. https://doi.org/10.1039/c1an15547d
  24. Singh, A., Poshtiban, S. and Evoy, S. 2013. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13, 1763-1786. https://doi.org/10.3390/s130201763
  25. Torres-Chavolla, E. and Alocilja, E. C. 2009. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 24, 2175-3182.
  26. Velusamy, V., Arshak, K., Korostynska, O., Oliqa, K. and Adley, C. 2010. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol. Adv. 28, 232-254. https://doi.org/10.1016/j.biotechadv.2009.12.004
  27. Wang, J., Hofnung, M. and Charbit, A. 2000. The C-terminal portion of the tail fiber protein of bacteriophage Lambda is responsible for binding to LamB, its receptor at the surface of Escherichia coli K-12. J. Bacteriol. 182, 508-512. https://doi.org/10.1128/JB.182.2.508-512.2000