참고문헌
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proceedings of Advances in Neural Information Processing Systems, pp. 1097-1105, 2012.
- K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition [Internet]. Available: http://arxiv.org/abs/1409.1556.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions [Internet]. Available: http://arxiv.org/abs/1409.4842.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of Computer Vision and Pattern Recognition, pp. 770-778, 2016.
- S.-H. Kwon, K.-W. Park, B.-H. Chang, "A comparison of predicting movie success between artificial neural network and decision Tree," Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol.7, no.4, pp. 593-601, Apr. 2017.
- Y.-J. Kim, E.-G. Kim, "Image based Fire Detection using Convolutional Neural Network," Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 9, pp. 1649-1656, Sep. 2016. https://doi.org/10.6109/jkiice.2016.20.9.1649
- T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, "DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning," in Proceedings of International Conference on Architectureal Suport for Programming Languages and Operating Systems, pp. 269-283, 2014.
- Y.-H. Chen, J. Emer, and V. Sze, "Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks," in Proceedings of International Symposium on Computer Architecture, pp. 367-379, 2016.
- S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Zie, Y. Chen, and T. Chen, "Cambricon: An instruction set architecture for neural networks," in Proceedings of International Symposium on Computer Architecture, pp. 393-405, 2016.
- L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li, "C-Brain: A deep learning accelerator that tames the diversity of CNNs through adaptive data-level parallelization," in Proceedings of Design Automation Conference, pp. 123:1-123:6, 2016.
- Y. Wang, H. Li, and X. Li, "Re-architecting the on-chip memory sub-system of machine learning accelerator for embedded devices," in Proceedings of International Conference on Computer Aided Design, pp. 13:1-13:6, 2016.
- J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song, Y. Wang, and H. Yang, "Going deeper with embedded FPGA platform for convolutional neural network," in Proceedings of ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pp. 26-35, 2016.
- S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, "Deep learning with limited numerical precision," in Proceedings of International Conference on Machine Learning, pp. 1737-1746, 2015.
- D. D. Lin, S. S. Talathi, and V. S. Annapureddy. Fixed point quantization of deep convolutional networks [Internet]. Available: http://arxiv.org/abs/1511.06393.
- W. Sung, S. Shin, and K. Hwang. Resiliency of deep neural networks under quantization [Internet]. Available: http://arxiv.org/abs/1511.06488.
- M. Courbariaux, "Training deep neural networks with low precision multiplications," in Proceedings of International Conference on Learning Representations, 2015.
- P. Judd, J. Algericio, T. Hetherington, T. Aamodt, N. E. Jerger, R. Urtasun, and A. Moshovos. Reduced-precision strategies for bounded memory in deep neural nets [Internet]. Available: http://arxiv.org/abs/1511.05236.
- P. Gysel, M. Motamedi, and S. Ghiasi. Hardware-oriented approximation of convolutional neural networks [Internet]. Available: http://arxiv.org/abs/1604.03168.
- D. Miyashita, E. H. Lee, and B. Murmann. Convolutional neural networks using loogarithmic data representation [Internet]. Available: http://arxiv.org/abs/1603.01025.
- Z. Deng, C. Xu, Q. Cai, and P. Faraboschi, "Reducedprecision memory value approximation for deep learning," HP Laboratories, Tech. Rep. HPL-2015-100, 2015.
- S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding [Internet]. Available: http://arxiv.org/abs/1510.00149.
- L. Lai, N. Suda, and V. Chandra. Deep convolutional neural network inference with floating-point weights and fixed-point activations [Internet]. Available: http://arxiv. org/abs/1703.03073.
- Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Gudarrama, and T. Darrel. Caffe: Convolutional Architecture for Fast Feature Embedding [Internet]. Available: http://arxiv.org/abs/1408.5093.
- K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Networks [Internet]. Available: https://github.com/KaimingHe/deep-residual-networks.
- J. Deng, W. Dong, R. Socher, J.-J. Li, K. Li, and L. Fei-Fei, "ImageNet: A large-scale hierarchical image database," in Proceedings of Computer Vision and Pattern Recognition, pp. 248-255, 2009.