DOI QR코드

DOI QR Code

최적설계 시스템을 이용한 부품에 대한 형상설계 방법론

Methodology of Shape Design for Component Using Optimal Design System

  • 이준성 (경기대학교 기계시스템공학과) ;
  • 조성규 (경기대학교 대학원 기계공학과)
  • Lee, Joon-Seong (Dept. of Mechanical System Engineering, Kyonggi University) ;
  • Cho, Seong-Gyu (Dept. of Mechanical Engineering, Graduate School, Kyonggi University)
  • 투고 : 2017.10.13
  • 심사 : 2018.01.05
  • 발행 : 2018.01.31

초록

본 논문은 최적설계 시스템을 이용한 형상설계 방법론에 대해 설명하고 있으며, 일반적으로 3차원 해석은 설계를 위해 반드시 필요하다. 퍼지지식처리 수법과 계산기하학적 기법에 바탕을 둔 자동화된 유한요소 메쉬 생성 기법은 상용화된 유한요소해석코드와 솔리드모델러와 함께 시스템에 결합되어 있다. 또한, 다층형 신경망의 도움과 함께 개발된 시스템은 다차원 설계변수 공간에 존재하는 여러 만족하는 설계해인 디자인윈도우를 얻을 수 있게 해준다. 개발된 최적화 설계 시스템 사용된 부품을 평가하는데 성공적으로 적용하였다. 사이드 하우징 브라켓을 현장에서 사용되어지는 굴삭기의 힘과 유압브레이커의 작용하는 응력을 응력 게이지로 사이드 하우징 브라켓의 크랙 발생부위에 부착하여 최대응력이 얼마나 걸리는지를 측정하였다. 적용하는 대상을 현장에서와 동일한 조건하에서 최대응력이 허용응력보다 같거나 적게 하고, 기존형상 유지, 재질은 SM490, 중량 최소화 안전계수는 3으로 하여, 최대응력 값에 대한 해석을 수행하였다. 구조가 비교적 간단한 36톤용 사이드 하우징 브라켓을 최적화하였지만, 다른 클래스의(톤수 별) 사이드 하우징 브라켓 적용 시 품질향상에 크게 기여하리라 생각된다.

This paper describes a methodology for shape design using an optimal design system, whereas generally a three dimensional analysis is required for such designs. An automatic finite element mesh generation technique, which is based on fuzzy knowledge processing and computational geometry techniques, is incorporated into the system, together with a commercial FE analysis code and a commercial solid modeler. Also, with the aid of multilayer neural networks, the present system allows us to automatically obtain a design window, in which a number of satisfactory design solutions exist in a multi-dimensional design parameter space. The developed optimal design system is successfully applied to evaluate the structures that are used. This study used a stress gauge to measure the maximum stress affecting the parts of the side housing bracket which are most vulnerable to cracking. Thereafter, we used a tool to interpret the maximum stress value, while maintaining the same stress as that exerted on the spot. Furthermore, a stress analysis was performed with the typical shape maintained intact, SM490 used for the material and the minimizing weight safety coefficient set to 3, while keeping the maximum stress the same as or smaller than the allowable stress. In this paper, a side housing bracket with a comparably simple structure for 36 tons was optimized, however if the method developed in this study were applied to side housing brackets of different classes (tons), their quality would be greatly improved.

키워드

참고문헌

  1. Schroeder, W. J., Shephard, M. S., "Combined Octree/Delaunay Method for Fully Automatic 3-D Mesh Generation", Int. Journal for Numerical Methods in Engineering, Vol. 29, pp. 37-55, 1990. DOI: https://doi.org/10.1002/nme.1620290105
  2. Watson, D. F., "Computing The N-Dimensional Delaunay Tessellation with Application to Voronoi Polytopes", The Computer Journal, Vol. 24, No. 2, pp. 167-172, 1991. DOI: https://doi.org/10.1093/comjnl/24.2.167
  3. J. S. Lee, "Development of the Fuzzy-Based System for Stress Intensity Factor Analysis", Int. Journal of Fuzzy Logic and Intelligent Systems, Vol. 12, No. 3, pp. 255-260, 2002. DOI: https://doi.org/10.5391/JKIIS.2002.12.3.255
  4. Shephard, M. S., Georges, M. K., "Automatic Three-Dimensional Mesh Generation by the Finite Octree Technique", International Journal for Numerical Methods in Engineering, Vol. 32, pp. 709-749, 1991. DOI: https://doi.org/10.1002/nme.1620320406
  5. Al-Nasra, M., Nguyen, D. T., "An Algorithm for Domain Decomposition in Finite Element Analysis", Computers and Structures, Vol. 39, No. 3, pp. 277-289, 1981. https://doi.org/10.1016/0045-7949(91)90026-I
  6. Rumelhart, D. E., Hinton, G. E., Williams, G. E., "Learning Representation by Back-propagation Errors", Nature, 323, pp. 533-536, 1986. DOI: https://doi.org/10.1038/323533a0
  7. Lee, J.-S., Yagawa, G., Park, M.W., "Automatic Mesh Generation for Three-Dimensional Structures Consisting of Free-Form Surfaces", Transactions of the Society of CAD/CAM Engineers, Vol. 1, No. 1, pp. 65-75, 1996.
  8. Lee, J.-S., "Automatic Mesh Generation System of 3-D Shell Structures Based on Fuzzy Knowledge Processing", Institute of Industrial Technology Journal, Vol. 13, pp. 227-248, 1997.
  9. J. T. Oden, L. Demkowicz, W. Rachowicz and T. A. Westermann, "Toward a Universal h-p Adaptive Finite Element Strategy; Part 2, A Posteriori Error Estimation", Computer Methods in Applied Mechanics and Engineering, 77, pp. 113-180, 1989. DOI: https://doi.org/10.1016/0045-7825(89)90130-8
  10. S. H. Lo, "Automatic Mesh Generation and Adaptation by Using Contours", International Journal for Numerical Methods in Engineering, 31, pp. 689-707, 1991. DOI: https://doi.org/10.1002/nme.1620310405
  11. P. L. Baehmann, M. S. Shephard, R.A. Ashley, A. Jay, "Automated Metal Forming Modeling Utilizing Adaptive Remeshing and Evolving Geometry", Computers and Structures, 30, pp. 319-325, 1988. DOI: https://doi.org/10.1016/0045-7949(88)90237-4
  12. O. C. Zienkiewicz , J. Z. Zhu, N. G. Gong, ": Effective and Practical h-p version Adaptive Analysis Procedures for the Finite Element Method", International Journal for Numerical Methods in Engineering, 28, pp. 879-891, 1999. DOI: https://doi.org/10.1002/nme.1620280411
  13. Lee, J.-S., "Automated CAE System for Three- Dimensional Complex Geometry", Doctoral Thesis, The University of Tokyo, 1995.