DOI QR코드

DOI QR Code

Numerical Analysis of Effects of Mold Cavity Shape on Bubble Defect Formation in UV NIL

UV NIL공정에서 몰드 중공부 형상과 기포결함에 대한 수치해석

  • Lee, Hosung (Department of Mechanical Engineering, SoonChunHyang University) ;
  • Kim, Bo Seon (Department of Mechanical Engineering, SoonChunHyang University) ;
  • Kim, Kug Weon (Department of Mechanical Engineering, SoonChunHyang University)
  • 이호성 (순천향대학교 기계공학과) ;
  • 김보선 (순천향대학교 기계공학과) ;
  • 김국원 (순천향대학교 기계공학과)
  • Received : 2017.10.11
  • Accepted : 2018.01.05
  • Published : 2018.01.31

Abstract

Nanoimprint lithography (NIL) is an emerging technology that enables cost-effective and high-throughput nanofabrication. In ultraviolet (UV) NIL, low-cost and high-speed production can be achieved using a non-vacuum environment at room temperature and low pressure. However, there are problems with the formation of bubble defects in such an environment. This paper investigates the shape of the mold cavity and the bubble defect formation in UV NIL in a non-vacuum environment. The bubble defect formation was simulated using two-dimensional flow analysis and the VOF method for commonly used cavity mold shapes (rectangular, elliptical, and triangular). The characteristics of the resist flow front and various contact angles were also analyzed. The shape of the mold cavity had a very significant effect on the bubble defect formation. For all cavity shapes, a smaller contact angle with the mold and larger contact angle with the substrate decreased the possibility of bubble defect formation. The elliptical shape was the most effective for preventing bubble defect formation.

최근 나노임프린트 리소그래피 공정이 마이크로/나노 스케일의 소자 개발에 있어서 경제적으로 대량 생산할 수 있는 기술로 주목 받고 있다. 자외선경화 방식의 나노임프린트의 경우 상온 및 저압의 장점과 함께 비진공 환경에서 공정을 통하여 설비 비용의 저감과 생산공정의 고속화를 달성할 수 있다. 그러나 이 경우 비진공 환경에서 발생하는 기포결함의 문제를 해결해야만 한다. 본 연구에서는 비진공 환경에서의 자외선경화 방식의 나노임프린트 공정에서 몰드 중공부 단면의 형상과 기포결함 발생 관계를 연구하였다. 일반적으로 많이 사용되는 사각형 단면과 타원형 단면 그리고 삼각형 단면에 대하여 2차원 유동해석 및 VOF 방법을 통하여 기포결함을 시뮬레이션 하였고 단면의 형상과 다양한 접촉각에 따른 유동선단의 특성을 분석하였다. 해석결과 몰드 중공부 형상은 기포결함 발생에 매우 중요한 영향을 미치며, 고려된 형상 모두 몰드와의 접촉각이 작을수록, 기판과의 접촉각이 클수록 기포결함 발생 가능성이 작아짐을 알 수 있었다. 또한 타원형 형상이 기포결함 발생방지 측면에서 가장 효과적임을 확인하였다.

Keywords

References

  1. S. Chou and P. Krauss, "Imprint lithography with sub-10nm feature size and high throughput," Microelectronic Engineering, vol. 35, pp. 237-240, 1997. DOI: https://doi.org/10.1016/S0167-9317(96)00097-4
  2. N. W. Kim, K. W. Kim and H.-C.Sin, "Finite element analysis of low temperature thermal nanoimprint lithography using a viscoelastic model," Microelectronic Engineering, vol. 85, pp. 1858-1865, 2008. DOI: https://doi.org/10.1016/j.mee.2008.05.030
  3. K. Y. Lee and K. W. Kim, "A study on the filling process and residual layer formation in nanoimprint lithography process," Journal of the Korea Academia-Industrial coorperation Society, vol. 13, no. 9, pp. 3835-3840, 2012.
  4. N. W. Kim, K. W. Kim and H.-C.Sin, "A mathematical model for slip phenomenon in a cavity-filling process of nanoimprint lithography," Microelectronic Engineering, vol. 86, pp. 2324-2329, 2009. DOI: https://doi.org/10.1016/j.mee.2009.04.011
  5. D. Morihara, H. Hiroshima and Y. Hirai, "Numerical study on bubble trapping in UV-nanoimprint lithography," Microelectronic Engineering, vol. 86, no. 4-6, pp. 684-687, 2009. DOI: https://doi.org/10.1016/j.mee.2008.12.005
  6. Y. Nagaoka, D. Morihara, H. Hiroshima and Y. Hirai, "Simulation study on bubble trapping in UV nanoimprint lithography," Journal of Photopolymer Science and Technology, vol. 22, no. 2, pp. 171-174, 2009. DOI: https://doi.org/10.2494/photopolymer.22.171
  7. H. Hiroshima, M. Komuro, N. Kasahara, Y. Kurashima and J. Taniguchi, "Elimination of pattern defects of nanoimprint under atmospheric condition," Japanese Journal of Applied Physics, vol. 42, pp. 3849-3853, 2003. DOI: https://doi.org/10.1143/JJAP.42.3849
  8. H. Hiroshima and M. Komuro, "Control of bubble defects in UV nanoimprint," Japanese Journal of Applied Physics, vol. 46, no. 9B, pp. 6391-6394., 2007. DOI: https://doi.org/10.1143/JJAP.46.6391
  9. X. Liang, H. Tan, Z. Fu and S. Y. Chou, "Air bubble formation and dissolution in dispensing nanoimprint lithography," Nanotechnology, vol. 18, no. 2, pp. 1-7, 2007. DOI: https://doi.org/10.1088/0957-4484/18/2/025303
  10. S. Reddy, P. R. Schunk and R. T. Bonnecaze, "Dynamics of low capillary number interfaces moving through sharp features," Physics of Fluids, vol. 17, no. 12, pp. 122104-1-6, 2005. DOI: https://doi.org/10.1063/1.2140691
  11. S. Reddy and R. T. Bonnecaze, "Simulation of fluid flow in the step and flash imprint lithography process," Microelectronic Engineering, vol. 82, no. 1, pp. 60-70, 2005. DOI: https://doi.org/10.1016/j.mee.2005.06.002
  12. K. Y. Lee and K. W. Kim, "A Study on the formation of air bubble by the droplet volume and dispensing method in UV NIL," Journal of the Korea Academia-Industrial coorperation Society, vol. 14, no. 9, pp. 4178-4184, 2013.
  13. J. M. Seok and N. W. Kim, "Analytic and numerical study for air bubble defect of UV-NIL process", Journal of the Korean Society of Manufacturing Technology Engineers, vol. 21, no. 3, pp. 473-478, 2012. DOI: https://doi.org/10.7735/ksmte.2012.21.3.473
  14. W. Y. Lee, N. W. Kim, D. H. Kim and K. W. Kim, "Numerical analysis of effects of velocity inlet and residual layer thickness of resist on bubble defect formation", Journal of the Semiconductor & Display Technology, vol. 14, no. 3. pp. 61-66, 2015.