DOI QR코드

DOI QR Code

Anodic Growth of Large Inner Diameter TiO2 Nanotubes

TiO2 나노튜브 내경 확장을 위한 양극산화 조건

  • Lee, Hyeon-Kwon (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Oh, Hyunchul (Department of Energy Engineering, Gyeongnam National University of Science and Technology(GNTECH)) ;
  • Lee, Kiyoung (School of Nano & Materials Science and Engineering, Kyungpook National University)
  • 이현권 (경북대학교 나노소재공학부) ;
  • 오현철 (경남과학기술대학교 에너지공학과) ;
  • 이기영 (경북대학교 나노소재공학부)
  • Received : 2018.01.23
  • Accepted : 2018.01.31
  • Published : 2018.02.28

Abstract

In the present work, we demonstrate the feasibility to form large inner diameter $TiO_2$ nanotubes by anodization of Ti in a HF/ethylene glycol electrolyte. In order to achieve the large inner diameter $TiO_2$ nanotubes, optimization of the anodization condition is required. We discover the key factors in the formation of large inner diameter $TiO_2$ nanotubes are concentration of water in the electrolyte, anodization temperatures, and high-applied potential. Under optimum conditions, the inner diameters of $TiO_2$ nanotubes are 379 nm. The results are approximately 3 folders larger than the general case.

Keywords

References

  1. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous $TiO_2$ solar cells with high photon-to-electron conversion efficiencies, Nature 395 (1998) 583-585. https://doi.org/10.1038/26936
  2. M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem. 44 (2005) 6841-6851. https://doi.org/10.1021/ic0508371
  3. P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, $TiO_2$ nanotubes and their application in dye-sensitized solar cells, Nanoscale 2 (2010) 45-59. https://doi.org/10.1039/B9NR00131J
  4. S. U. M. Khan, M. Al-Shahry, W. B. Ingler Jr., Efficient photochemical water splitting by a chemically modified n-$TiO_2$, Science 297 (2002) 2243-2245. https://doi.org/10.1126/science.1075035
  5. J. H. Park, S. Kim, A. J. Bard, Novel carbon-doped $TiO_2$ nanotube arrays with high aspect ratios for efficient solar water splitting, Nano Lett. 6 (2006) 24-28. https://doi.org/10.1021/nl051807y
  6. M. Ni, Michael K. H. Leung, Dennis Y. C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using $TiO_2$ for hydrogen production, Renew. Sust. Energ. Rev. 11 (2007) 401-425. https://doi.org/10.1016/j.rser.2005.01.009
  7. T. Noguchi, A. Fujishima, P. Sawunyama, K. Hashimoto, Photocatalytic degradation of gaseous formaldehyde using $TiO_2$ film, Environ. Sci. Technol. 32 (1998) 3831-3833. https://doi.org/10.1021/es980299+
  8. Y. Ohko, I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakashima, Y. Kubota, A. Fujishima, Degradation of bisphenol A in water by $TiO_2$ photocatalyst, Environ. Sci. Technol. 35 (2001) 2365-2368. https://doi.org/10.1021/es001757t
  9. W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, Efficient degradation of toxic organic pollutants with $Ni_2O_3/TiO_{2-x}B_x$ under visible irradiation, J. Am. Chem. Soc. 126 (2004) 4782-4783. https://doi.org/10.1021/ja0396753
  10. V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach, Electrochim. Acta 45 (1999) 921-929. https://doi.org/10.1016/S0013-4686(99)00283-2
  11. S. Li, G. Zhang, D. Guo, L. Yu, W. Zhang, Anodization fabrication of highly ordered $TiO_2$ nanotubes, J. Phys. Chem. C 113 (2009) 12759-12765.
  12. J. M. Macak, H. Tsuchiya, P. Schmuki, High-aspect-ratio $TiO_2$ nanotubes by anodization of titanium, Angew. Chem. Int. Ed. 44 (2005) 2100-2102. https://doi.org/10.1002/anie.200462459
  13. R. Beranek, H. Hildebrand, P. Schmuki, Self-organized porous titanium oxide preparerd in $H_2SO_4/HF$ electrolytes, Electrochem. Solid-State Lett. 6 (2003) B12-B14. https://doi.org/10.1149/1.1545192
  14. R. Hahn, T. stergiopoulus, J. M. Macak, D. Tsoukleris, A. G. Kontos, S. P. Albu, D. Kim, A. Ghicov, J. Kunze, P. Falaras, P. Schmuki, Efficient solar energy conversion using $TiO_2$ nanotubes produced by rapid breakdown anodization - a comparison, Phys. Stat. Sol. (RRL) 1 (2007) 135-137. https://doi.org/10.1002/pssr.200701074
  15. J. M. Macak, H. Hildebrand, U. Marten-Jahns, P. Schmuki, Mechanistic aspects and growth of large diameter self-organized $TiO_2$ nanotubes, J. Electroanal. Chem. 621 (2008) 254-266. https://doi.org/10.1016/j.jelechem.2008.01.005
  16. S. P. Albu, A. Ghicov, J. M. Macak, P. Schmuki, $250{\mu}m$ long anodic $TiO_2$ nanotubes with hexagonal self-ordering, Phys. Stat. Sol. (RRL) 1 (2007) R65- R67. https://doi.org/10.1002/pssr.200600069
  17. K. S. Raja, M. Misra, K. Paramguru, Formation of self-orderd nano-tublar structure of anodic oxide layer on titanium, Electrochim. Acta 51 (2005) 154-165. https://doi.org/10.1016/j.electacta.2005.04.011
  18. S. P. Albu, D. Kim, P. Schmuki, Growth of aligned $TiO_2$ bamboo-type nanotubes and highly ordered nanolace, Angew. Chem. 120 (2008) 1942-1945. https://doi.org/10.1002/ange.200704144
  19. D. Kim, A. Ghicov, S. P. Albu, P. Schmuki, Bamboo-type $TiO_2$ nanotubes: Improved conversion efficiency in dye-sensitized solar cells, J. Am. Chem. Soc. 130 (2008) 16454-16455. https://doi.org/10.1021/ja805201v
  20. C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, Nanocrystalline titanium oxide electrodes for photovoltaic applications, J. Am. Ceram. Soc., 80 (1997) 3157-3171.
  21. S. Agarwala, M. Kevin, A. S. Wong, C. K. N. Peh, V. Thavasi, G. W. Ho, Mesophase ordering of $TiO_2$ film wih high surface area and strong light harvesting for dye-sensitized solar cell, ACS Appl. Mater. Inter. 2 (2010) 1844-1850. https://doi.org/10.1021/am100421e
  22. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Gratzel, Application of highly ordered $TiO_2$ nanotube arrays in flexible dye-sensitized solar cells, ACS Nano 2 (2008) 1113-1116. https://doi.org/10.1021/nn800174y
  23. N. Liu, K. Lee, P. Schmuki, Small diameter $TiO_2$ nanotubes vs. nanopores in dye sensitized solar cells, Electrochem. Commun. 15 (2012) 1-4. https://doi.org/10.1016/j.elecom.2011.11.003
  24. P. Roy, S. Berger, P. Schmuki, $TiO_2$ nanotubes: Synthesis and applications, Angew. Chem. Int. Ed. 50 (2011) 2904-2939. https://doi.org/10.1002/anie.201001374
  25. S. Bauer, S. Kleber, P. Schmuki, $TiO_2$ nanotubes: Tailoring the geometry in $H_3PO_4/HF$ electrolytes, Electrochem. Commun. 8 (2006) 1321-1325. https://doi.org/10.1016/j.elecom.2006.05.030
  26. A. Ghicov, S. P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C. -A. Schiller, P. Falaras, P. Schmuki, $H_3PO_4/HF$ nanotubes in dye-sensitized solar cells: Critical factors for the conversion efficiency, Chem. Asian J. 4 (2009) 520-525. https://doi.org/10.1002/asia.200800441
  27. J. Wang, Z. Lin, Anodic formation of ordered $TiO_2$ nanotube array: Effects of electrolyte temperature and anodization potential, J. Phys. Cehm. C 113 (2009) 4026-4030. https://doi.org/10.1021/jp811201x
  28. J. M. Macak, P. Schmuki, Anodic growth of self-organzied anodic $TiO_2$ nanotubes in viscous electrolytes, Electrochim. Acta 52 (2006) 1258-1264. https://doi.org/10.1016/j.electacta.2006.07.021
  29. K. Lee, J. Kim, H. Kim, Y. Lee, Y. Tak, D. Kim, P. Schmuki, Effect of electrolyte conductivity on the formation of a nanotublar $TiO_2$ Photoanode for a dye-sensitized solar cell, J. Korean Phys. Soc. 54 (2009) 1027-1031. https://doi.org/10.3938/jkps.54.1027
  30. S. P. Albu, P. Roy, S. Virtanen, P. Schmuki, Self-organized $TiO_2$ nanotube arrays: critical effects on morphology and growth, Isr. J. Chem. 50 (2010) 453-467. https://doi.org/10.1002/ijch.201000059
  31. J. Choi, R. B. Wehrspohn, J. Lee, U. Gosele, Anodization of nanoimprinted titanium: a comparison with formation of porous alumina, Electrochim. Acta 49 (2004) 2645-2652. https://doi.org/10.1016/j.electacta.2004.02.015