References
- K.F. MacDonald and N.I. Zheludev, "Active Plasmonics: Current Status," Laser Photon. Rev., vol. 4, no. 4, June 2010, pp. 562-567. https://doi.org/10.1002/lpor.200900035
- N.I. Zheludev and Y.S. Kivshar, "From Metamaterials to Metadevices," Nat. Mater., vol. 11, Oct. 2012, pp. 917-924. https://doi.org/10.1038/nmat3431
-
M. Seo et al., "Active Terahertz Nanoantennas Based on
$VO_2$ Phase Transition," Nano Lett., vol. 10, no. 6, May 2010, pp. 2064-2068. https://doi.org/10.1021/nl1002153 -
J.-B. Park et al., "Tunable Subwavelength Hot Spot of Dipole Nanostructure Based on
$VO_2$ Phase Transition," Opt. Express, vol. 21, no. 13, July 2013, pp. 15205-15213. https://doi.org/10.1364/OE.21.015205 - M.A. Kats et al., "Ultra-Thin Perfect Absorber Employing a Tunable Phase Change Material," Appl. Phys. Lett., vol. 101, Sept. 2012, pp. 221101-1-221101-5. https://doi.org/10.1063/1.4767646
-
K. Appavoo and R.F. Haglund, "Detecting Nanoscale Size Dependence in
$VO_2$ Phase Transition Using a Split-Ring Resonator Metamaterial," Nano Lett., vol. 11, no. 3, Feb. 2011, pp. 1025-1031. https://doi.org/10.1021/nl103842v - Z. Sun, J. Zhou, and R. Ahuja, "Structure of Phase Change Materials for Data Storage," Phys. Rev. Lett., vol. 96, no. 5, Feb. 2006.
- A.V. Kolobov et al., "Understanding the Phase-Change Mechanism of Rewritable Optical Media," Nat. Mater., vol. 3, Sept. 2004, pp. 703-708. https://doi.org/10.1038/nmat1215
- M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, and R.A.M. Wolters, "Low-Cost and Nanoscale Non-volatile Memory Concept for Future Silicon Chips," Nat. Mater., vol. 4, Mar. 2005, pp. 347-352. https://doi.org/10.1038/nmat1350
- W.J. Wang et al., "Nonvolatile Phase Change Memory Nanocell Fabrication by Femtosecond Laser Writing Assisted with Near-Field Optical Microscopy," J. Appl. Phys., vol. 98, no. 12, Dec. 2005.
- C. Rios et al., "Integrated All-Photonic Non-volatile Multi-level Memory," Nat. Photon., vol. 9, Sept. 2015, pp. 725-733. https://doi.org/10.1038/nphoton.2015.182
- T. Cao et al., "Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies," Scientific Rep., vol. 4, Jan. 2014.
- P. Hosseini, C.D. Wright, and H. Bhaskaran, "An Optoelectronic Framework Enabled by Low-Dimensional Phase-Change Film," Nature, vol. 511, July 2014, pp. 206-211. https://doi.org/10.1038/nature13487
- N. Konforti, E. Marom, and S.T. Wu, "Phase-Only Modulation with Twisted Nematic Liquid-Crystal Spatial Light Modulators," Opt. Lett., vol. 13, no. 3, 1988, pp. 251-253. https://doi.org/10.1364/OL.13.000251
- S.A. Goorden et al., "Superpixel-Based Spatial Amplitude and Phase Modulation Using a Digital Micromirror Device," Opt. Express, vol. 22, no. 15, July 2014, pp. 17999-18009. https://doi.org/10.1364/OE.22.017999
-
H. Bhaskaran et al., "Nanoscale Phase Transformation in
$Ge_2Sb_2Te_5$ Using Encapsulated Scanning Probes and Retraction Force Microscopy," Rev. Sci. Instrum., vol. 80, Aug. 2009. -
H. Satoh, K. Sugawara, and K. Tanaka, "Nanoscale Phase Changes in Crystalline
$Ge_2Sb_2Te_5$ Films Using Scanning Probe Microscopes," J. Appl. Phys., vol. 99, no. 2, Jan. 2006, pp. 024306-1-024306-7. https://doi.org/10.1063/1.2163010 - T. Cao et al., "Mid-Infrared Tunable Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial," J. Opt. Soc. America B, vol. 30, no. 6, June 2013, pp. 1580-1585. https://doi.org/10.1364/JOSAB.30.001580
- T. Cao et al., "Rapid Phase Transition of a Phase-Change Metamaterial Perfect Absorber," Opt. Mater. Express, vol. 3, no. 8, Aug. 2013, pp. 1101-1110. https://doi.org/10.1364/OME.3.001101
- A. Tittl et al., "A Switchable Mid-Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability," Adv. Mater., vol. 27, no. 31, Aug. 2015, pp. 4597-4603. https://doi.org/10.1002/adma.201502023
- A.K.U. Michel et al., "Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning," Nano Lett., vol. 13, no. 8, June 2013, pp. 3470-3475. https://doi.org/10.1021/nl4006194
- A.K.U. Michel et al., "Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses," ACS Photon., vol. 1, no. 9, Aug. 2014, pp. 833-839. https://doi.org/10.1021/ph500121d
- W. Dong et al., "Wideband Absorbers in the Visible with Ultrathin Plasmonic-Phase Change Material Nanogratings," J. Phys. Chem. C, vol. 120, no. 23, June 2016, pp. 12713-12722. https://doi.org/10.1021/acs.jpcc.6b01080
- S.A. Benton and V.M. Bove Jr., Holographic Imaging, Hoboken, NJ, USA: John Wiley & Sons, 2008.
- X. Liu and W.J. Padilla, "Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials," Adv. Opt. Mater., vol. 1, no. 8, June 2013, pp. 559-562. https://doi.org/10.1002/adom.201300163
- S.-Y. Lee et al., "Polarization-Multiplexed Plasmonic Phase Generation with Distributed Nanoslits," Opt. Express, vol. 23, no. 12, June 2015, pp. 15598-15607. https://doi.org/10.1364/OE.23.015598
- H.W. Lee et al., "Nanoscale Conducting Oxide PlasMOStor," Nano Lett., vol. 14, Oct. 2014, pp. 6463-6468. https://doi.org/10.1021/nl502998z
- X. Li et al., "Athermally Photoreduced Graphene Oxides for Three-Dimensional Holographic Images," Nat. Commun., vol. 6, Apr. 2015, pp. 1-7.
-
J.-W. Park et al., "Optical Properties of Pseudo Binary GeTe, Ge
$Ge_2Sb_2Te_5$ ,$ GeSb_2Te_4$ ,$GeSb_4Te_7$ , and$Sb_2Te_3$ from Ellipsometry and Density Functional Theory," Phys. Rev. B, vol. 80, 2009, pp. 115209-1-115209-14. https://doi.org/10.1103/PhysRevB.80.115209 - H. Kim, I.M. Lee, and B. Lee, "Extended Scattering-Matrix Method for Efficient Full Parallel Implementation of Rigorous Coupled-Wave Analysis," J. Opt. Soc. America A, vol. 24, no. 8, Aug. 2007, pp. 2313-2327. https://doi.org/10.1364/JOSAA.24.002313
- J.W. Yoon et al., "Critical Coupling in Dissipative Surface-Plasmon Resonators with Multiple Ports," Opt. Express, vol. 18, no. 25, Nov. 2010, pp. 25702-25711. https://doi.org/10.1364/OE.18.025702
- J.W. Yoon et al., "Surface-Plasmon Mediated Total Absorption of Light into Silicon," Opt. Express, vol. 19, no. 21, Oct. 2011, pp. 20673-20680. https://doi.org/10.1364/OE.19.020673
Cited by
- Light- and space-adaptable display vol.19, pp.4, 2017, https://doi.org/10.1080/15980316.2018.1524798
- Improvement in cyclic operation of unit pixel device using Sb-excess Ge2Sb2Te5 thin films for hologram image implementation vol.57, pp.8, 2018, https://doi.org/10.7567/jjap.57.082201
- Switchable Holographic Device Based on Reversible Electrodeposition vol.4, pp.2, 2017, https://doi.org/10.1002/admt.201800478
- Reflective‐Type Transparent/Colored Mirror Switchable Device Using Reversible Electrodeposition with Fabry-Perot Interferometer vol.5, pp.10, 2017, https://doi.org/10.1002/admt.202000367
- Wide-viewing full-color depthmap computer-generated holograms vol.29, pp.17, 2021, https://doi.org/10.1364/oe.426541
- A Narrow-Linewidth Optical Parametric Oscillator Inserted with Fabry-Perot Etalon vol.8, pp.12, 2017, https://doi.org/10.3390/photonics8120528