DOI QR코드

DOI QR Code

Design Method of Tunable Pixel with Phase-Change Material for Diffractive Optical Elements

  • Lee, Seung-Yeol (School of Electronics Engineering, Kyungpook National University) ;
  • Kim, Han Na (ICT Material & Components Research Laboratory, ETRI) ;
  • Kim, Yong Hae (ICT Material & Components Research Laboratory, ETRI) ;
  • Kim, Tae-Youb (ICT Material & Components Research Laboratory, ETRI) ;
  • Cho, Seong-Mok (ICT Material & Components Research Laboratory, ETRI) ;
  • Kang, Han Byeol (ICT Material & Components Research Laboratory, ETRI) ;
  • Hwang, Chi-Sun (ICT Material & Components Research Laboratory, ETRI)
  • Received : 2016.03.06
  • Accepted : 2016.12.14
  • Published : 2017.06.01

Abstract

In this paper, we propose a scheme for designing a tunable pixel layer based on a $Ge_2Sb_2Te_5$ (GST) alloy thin film. We show that the phase change of GST can significantly affect the reflection characteristic when the GST film is embedded into a dielectric encapsulation layer. We investigate the appropriate positions of the GST film within the dielectric layer for high diffraction efficiency, and we prove that they are antinodes of Fabry-Perot resonance inside the dielectric layer. Using the proposed scheme, we can increase the diffraction efficiency by about ten times compared to a bare GST film pixel, and 80 times for the first-to-zeroth-order diffraction power ratio. We show that the proposed scheme can be designed alternatively for a broadband or wavelength-selective type by tuning the dielectric thickness, and we discuss a multi-phase example with a double-stack structure.

Keywords

References

  1. K.F. MacDonald and N.I. Zheludev, "Active Plasmonics: Current Status," Laser Photon. Rev., vol. 4, no. 4, June 2010, pp. 562-567. https://doi.org/10.1002/lpor.200900035
  2. N.I. Zheludev and Y.S. Kivshar, "From Metamaterials to Metadevices," Nat. Mater., vol. 11, Oct. 2012, pp. 917-924. https://doi.org/10.1038/nmat3431
  3. M. Seo et al., "Active Terahertz Nanoantennas Based on $VO_2$ Phase Transition," Nano Lett., vol. 10, no. 6, May 2010, pp. 2064-2068. https://doi.org/10.1021/nl1002153
  4. J.-B. Park et al., "Tunable Subwavelength Hot Spot of Dipole Nanostructure Based on $VO_2$ Phase Transition," Opt. Express, vol. 21, no. 13, July 2013, pp. 15205-15213. https://doi.org/10.1364/OE.21.015205
  5. M.A. Kats et al., "Ultra-Thin Perfect Absorber Employing a Tunable Phase Change Material," Appl. Phys. Lett., vol. 101, Sept. 2012, pp. 221101-1-221101-5. https://doi.org/10.1063/1.4767646
  6. K. Appavoo and R.F. Haglund, "Detecting Nanoscale Size Dependence in $VO_2$ Phase Transition Using a Split-Ring Resonator Metamaterial," Nano Lett., vol. 11, no. 3, Feb. 2011, pp. 1025-1031. https://doi.org/10.1021/nl103842v
  7. Z. Sun, J. Zhou, and R. Ahuja, "Structure of Phase Change Materials for Data Storage," Phys. Rev. Lett., vol. 96, no. 5, Feb. 2006.
  8. A.V. Kolobov et al., "Understanding the Phase-Change Mechanism of Rewritable Optical Media," Nat. Mater., vol. 3, Sept. 2004, pp. 703-708. https://doi.org/10.1038/nmat1215
  9. M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, and R.A.M. Wolters, "Low-Cost and Nanoscale Non-volatile Memory Concept for Future Silicon Chips," Nat. Mater., vol. 4, Mar. 2005, pp. 347-352. https://doi.org/10.1038/nmat1350
  10. W.J. Wang et al., "Nonvolatile Phase Change Memory Nanocell Fabrication by Femtosecond Laser Writing Assisted with Near-Field Optical Microscopy," J. Appl. Phys., vol. 98, no. 12, Dec. 2005.
  11. C. Rios et al., "Integrated All-Photonic Non-volatile Multi-level Memory," Nat. Photon., vol. 9, Sept. 2015, pp. 725-733. https://doi.org/10.1038/nphoton.2015.182
  12. T. Cao et al., "Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies," Scientific Rep., vol. 4, Jan. 2014.
  13. P. Hosseini, C.D. Wright, and H. Bhaskaran, "An Optoelectronic Framework Enabled by Low-Dimensional Phase-Change Film," Nature, vol. 511, July 2014, pp. 206-211. https://doi.org/10.1038/nature13487
  14. N. Konforti, E. Marom, and S.T. Wu, "Phase-Only Modulation with Twisted Nematic Liquid-Crystal Spatial Light Modulators," Opt. Lett., vol. 13, no. 3, 1988, pp. 251-253. https://doi.org/10.1364/OL.13.000251
  15. S.A. Goorden et al., "Superpixel-Based Spatial Amplitude and Phase Modulation Using a Digital Micromirror Device," Opt. Express, vol. 22, no. 15, July 2014, pp. 17999-18009. https://doi.org/10.1364/OE.22.017999
  16. H. Bhaskaran et al., "Nanoscale Phase Transformation in $Ge_2Sb_2Te_5$ Using Encapsulated Scanning Probes and Retraction Force Microscopy," Rev. Sci. Instrum., vol. 80, Aug. 2009.
  17. H. Satoh, K. Sugawara, and K. Tanaka, "Nanoscale Phase Changes in Crystalline $Ge_2Sb_2Te_5$ Films Using Scanning Probe Microscopes," J. Appl. Phys., vol. 99, no. 2, Jan. 2006, pp. 024306-1-024306-7. https://doi.org/10.1063/1.2163010
  18. T. Cao et al., "Mid-Infrared Tunable Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial," J. Opt. Soc. America B, vol. 30, no. 6, June 2013, pp. 1580-1585. https://doi.org/10.1364/JOSAB.30.001580
  19. T. Cao et al., "Rapid Phase Transition of a Phase-Change Metamaterial Perfect Absorber," Opt. Mater. Express, vol. 3, no. 8, Aug. 2013, pp. 1101-1110. https://doi.org/10.1364/OME.3.001101
  20. A. Tittl et al., "A Switchable Mid-Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability," Adv. Mater., vol. 27, no. 31, Aug. 2015, pp. 4597-4603. https://doi.org/10.1002/adma.201502023
  21. A.K.U. Michel et al., "Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning," Nano Lett., vol. 13, no. 8, June 2013, pp. 3470-3475. https://doi.org/10.1021/nl4006194
  22. A.K.U. Michel et al., "Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses," ACS Photon., vol. 1, no. 9, Aug. 2014, pp. 833-839. https://doi.org/10.1021/ph500121d
  23. W. Dong et al., "Wideband Absorbers in the Visible with Ultrathin Plasmonic-Phase Change Material Nanogratings," J. Phys. Chem. C, vol. 120, no. 23, June 2016, pp. 12713-12722. https://doi.org/10.1021/acs.jpcc.6b01080
  24. S.A. Benton and V.M. Bove Jr., Holographic Imaging, Hoboken, NJ, USA: John Wiley & Sons, 2008.
  25. X. Liu and W.J. Padilla, "Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials," Adv. Opt. Mater., vol. 1, no. 8, June 2013, pp. 559-562. https://doi.org/10.1002/adom.201300163
  26. S.-Y. Lee et al., "Polarization-Multiplexed Plasmonic Phase Generation with Distributed Nanoslits," Opt. Express, vol. 23, no. 12, June 2015, pp. 15598-15607. https://doi.org/10.1364/OE.23.015598
  27. H.W. Lee et al., "Nanoscale Conducting Oxide PlasMOStor," Nano Lett., vol. 14, Oct. 2014, pp. 6463-6468. https://doi.org/10.1021/nl502998z
  28. X. Li et al., "Athermally Photoreduced Graphene Oxides for Three-Dimensional Holographic Images," Nat. Commun., vol. 6, Apr. 2015, pp. 1-7.
  29. J.-W. Park et al., "Optical Properties of Pseudo Binary GeTe, Ge$Ge_2Sb_2Te_5$, $ GeSb_2Te_4$, $GeSb_4Te_7$, and $Sb_2Te_3$ from Ellipsometry and Density Functional Theory," Phys. Rev. B, vol. 80, 2009, pp. 115209-1-115209-14. https://doi.org/10.1103/PhysRevB.80.115209
  30. H. Kim, I.M. Lee, and B. Lee, "Extended Scattering-Matrix Method for Efficient Full Parallel Implementation of Rigorous Coupled-Wave Analysis," J. Opt. Soc. America A, vol. 24, no. 8, Aug. 2007, pp. 2313-2327. https://doi.org/10.1364/JOSAA.24.002313
  31. J.W. Yoon et al., "Critical Coupling in Dissipative Surface-Plasmon Resonators with Multiple Ports," Opt. Express, vol. 18, no. 25, Nov. 2010, pp. 25702-25711. https://doi.org/10.1364/OE.18.025702
  32. J.W. Yoon et al., "Surface-Plasmon Mediated Total Absorption of Light into Silicon," Opt. Express, vol. 19, no. 21, Oct. 2011, pp. 20673-20680. https://doi.org/10.1364/OE.19.020673

Cited by

  1. Light- and space-adaptable display vol.19, pp.4, 2017, https://doi.org/10.1080/15980316.2018.1524798
  2. Improvement in cyclic operation of unit pixel device using Sb-excess Ge2Sb2Te5 thin films for hologram image implementation vol.57, pp.8, 2018, https://doi.org/10.7567/jjap.57.082201
  3. Switchable Holographic Device Based on Reversible Electrodeposition vol.4, pp.2, 2017, https://doi.org/10.1002/admt.201800478
  4. Reflective‐Type Transparent/Colored Mirror Switchable Device Using Reversible Electrodeposition with Fabry-Perot Interferometer vol.5, pp.10, 2017, https://doi.org/10.1002/admt.202000367
  5. Wide-viewing full-color depthmap computer-generated holograms vol.29, pp.17, 2021, https://doi.org/10.1364/oe.426541
  6. A Narrow-Linewidth Optical Parametric Oscillator Inserted with Fabry-Perot Etalon vol.8, pp.12, 2017, https://doi.org/10.3390/photonics8120528