Research on the drone detection based on the radar

레이다 기반의 드론 탐지 기법 연구

  • 문민정 (한국항공대학교 항공전자정보공학과 위성전자연구실) ;
  • 송경민 (한국항공대학교 항공전자정보공학과 위성전자연구실) ;
  • 유수진 (한국항공대학교 항공전자정보공학과 위성전자연구실) ;
  • 심현석 (한국항공대학교 항공전자정보공학과 위성전자연구실) ;
  • 이우경 (한국항공대학교 항공전자정보공학과 위성전자연구실)
  • Received : 2017.05.31
  • Accepted : 2017.06.22
  • Published : 2017.06.30

Abstract

Recently, acccording to price decline and miniaturization of drone, it is increased dramatically that drone usage in various category including military and private sectors. In accordance with popular usage, There is a increasing risk of safety accident, national security and public privacy problem. Hence there is a high demand for study and analysis applicable to the related technology and anti-drone method including drone detection and jamming. In general, it is extremely difficult to detect and recognize drones using conventional sensors. In this paper, we classify drone detection technology and Drone detection experiments are performed using CW RADAR to obtain and analyze micro-doppler pattern. This preliminary study aims to provide fundamental theory on radar drone detection and experimental test results such that in-depth anti-drone technology can be established in future.

오늘날 드론의 대중화와 드론 관련 산업의 확장 등으로 인하여 드론 보급이 민 군에 걸쳐 증가하였고, 이와 더불어 보안, 안전사고, 치안 안보 위협 등의 우려도 함께 커지고 있다. 드론은 크기가 작고 반사도가 낮은 재질로 되어 있어 일반적인 센서로는 탐지가 어려운 것으로 알려져 왔다. 이에, 드론으로 인해 발생하는 사건 및 사고를 예방하기 위해서는 드론의 탐지와 위험 요소에 대응할 수 있는 기술에 대한 연구가 선행되어야 한다. 본 논문에서는 드론 탐지 기법을 분류하였다. 또한 CW 레이다를 기반으로 한 드론 탐지 실험을 통해, 마이크로 도플러의 패턴을 분석하여 드론 탐지의 가능성을 제시한다.

Keywords

References

  1. Salloum, Hady, et al. "Acoustic system for low flying aircraft detection." Technologies for Homeland Security (HST), 2015 IEEE International Symposium on. IEEE, 2015.
  2. Mezei, Jozsef, and Andras Molnar. "Drone sound detection by correlation." Applied Computational Intelligence and Informatics (SACI), 2016 IEEE 11th International Symposium on. IEEE, 2016.
  3. Schroder, Arne, et al. "Numerical and experimental radar cross section analysis of the quadrocopter DJI Phantom 2." Radar Conference, 2015 IEEE. IEEE, 2015.
  4. Park, Seongha, et al. "Combination of radar and audio sensors for identification of rotor-type unmanned aerial vehicles (uavs)." SENSORS, 2015 IEEE. IEEE, 2015.
  5. Harman, Stephen. "Characteristics of the Radar signature of multi-rotor UAVs." Radar Conference (EuRAD), 2016 European. IEEE, 2016.
  6. Vaila, Minna, et al. "Incorporating a stochastic model of the target orientation into a momentary RCS distribution." Radar Conference (RadarCon), 2015 IEEE. IEEE, 2015.
  7. Li, Chenchen J., and Hao Ling. "An investigation on the radar signatures of small consumer drones." IEEE Antennas and Wireless Propagation Letters 16 (2017): 649-652 https://doi.org/10.1109/LAWP.2016.2594766
  8. Troy, Willis, Michael Thompson, and Yang Li. "ISAR imaging of rotating blades with an UWB radar." Wireless and Microwave Circuits and Systems (WMCS), 2015 Texas Symposium on. IEEE, 2015.
  9. Thayaparan, Thayananthan, et al. "Analysis of radar micro-Doppler signatures from experimental helicopter and human data." IET Radar, Sonar & Navigation 1.4 (2007): 289-299. https://doi.org/10.1049/iet-rsn:20060103
  10. Ritchie, Matthew, et al. "Multistatic micro-Doppler radar feature extraction for classification of unloaded/loaded micro-drones." IET Radar, Sonar & Navigation (2016).
  11. De Wit, J. J. M., R. I. A. Harmanny, and P. Molchanov. "Radar micro-Doppler feature extraction using the singular value decomposition." Radar Conference (Radar), 2014 International. IEEE, 2014.
  12. Molchanov, Pavlo, et al. "Classification of small UAVs and birds by micro-Doppler signatures." International Journal of Microwave and Wireless Technologies 6.3-4 (2014): 435-444. https://doi.org/10.1017/S1759078714000282
  13. Moses, Allistair, Matthew J. Rutherford, and Kimon P. Valavanis. "Radar-based detection and identification for miniature air vehicles." Control Applications (CCA), 2011 IEEE International Conference on. IEEE, 2011.
  14. Mendis, Gihan J., et al. "Deep learning based doppler radar for micro UAS detection and classification." Military Communications Conference, MILCOM 2016-2016 IEEE. IEEE, 2016.
  15. Chen, Victor C. The micro-Doppler effect in radar. Artech House, 2011.
  16. Allen, Jonathan. "Short term spectral analysis, synthesis, and modification by discrete Fourier transform." IEEE Transactions on Acoustics, Speech, and Signal Processing 25.3 (1977): 235-238. https://doi.org/10.1109/TASSP.1977.1162950