DOI QR코드

DOI QR Code

A Movie Recommendation System based on Fuzzy-AHP with User Preference and Partition Algorithm

사용자 선호도와 군집 알고리즘을 이용한 퍼지-계층적 분석 기법 기반 영화 추천 시스템

  • Oh, Jae-Taek (Dept. of Computer Science & Engineering, Kongju National University) ;
  • Lee, Sang-Yong (Div. of Computer Science & Engineering, Kongju National University)
  • 오재택 (공주대학교 컴퓨터공학과) ;
  • 이상용 (공주대학교 컴퓨터공학부)
  • Received : 2017.09.28
  • Accepted : 2017.11.20
  • Published : 2017.11.28

Abstract

The current recommendation systems have problems including the difficulty of figuring out whether they recommend items that actual users have preference for or have simple interest in, the scarcity of data to recommend proper items due to the extremely small number of users, and the cold-start issue of the dropping system performance to recommend items that can satisfy users according to the influx of new users. In an effort to solve these problems, this study implemented a movie recommendation system to ensure user satisfaction by using the Fuzzy-Analytic Hierarchy Process, which can reflect uncertain situations and problems, and the data partition algorithm to group similar items among the given ones. The data of a survey on movie preference with 61 users was applied to the system, and the results show that it solved the data scarcity problem based on the Fuzzy-AHP and recommended items fit for a user with the data partition algorithm even with the influx of new users. It is thought that research on the density-based clustering will be needed to filter out future noise data or outlier data.

현재 추천 시스템은 실제 사용자가 선호하는 항목을 추천하는지, 아니면 단순히 관심 정도의 항목을 추천하는지 알 수 없다는 문제와 사용자들이 매우 적어 적합한 항목을 추천할 수 없는 데이터 희소성 문제, 새로운 사용자들이 유입됨에 따라 사용자들이 만족하는 항목을 추천하기 위해 시스템의 성능이 저하되는 Cold-Start 문제 등이 발생한다. 본 연구에서는 이러한 문제점을 해결하기 위해 불확실한 상황이나 문제들을 반영할 수 있는 퍼지-계층적 분석(Fuzzy-Analytic Hierarchy Process)과 주어진 항목들을 비슷한 항목들끼리 모으는 데이터 군집화 알고리즘을 활용하여 사용자들에게 만족할 수 있는 영화를 추천하기 위한 시스템을 구현하였다. 61명을 대상으로 영화 선호도에 대한 설문 조사를 실시한 데이터를 본 시스템에 적용한 결과 Fuzzy-AHP 기법을 통해서 데이터 희소성 문제를 해소할 수 있었으며, 또한 데이터 군집화 알고리즘을 통해 새로운 사용자들이 유입되어도 사용자에게 적합한 항목이 추천되었음을 확인할 수 있었다. 향후 노이즈 데이터나 아웃라이어(Outlier) 데이터를 걸러낼 수 있는 밀도 기반 클러스터링에 대한 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Doo-Soon Park, Yang-Se Moon, Young-Hyo Park, Chan-Hyun Yoon, Young-Sik Jung, Hyung-Suk Jang, Co-Author, "Big Data Computing Techniques", p.126-127, Hanbit Academy, Inc., 2015.
  2. Hwa-Jong Kim, "Introduction to Data Science", p.188, Hongreung Science Publishing Co., 2014.
  3. Il Lim, "Recommendation System Using R", pp.3-4, Chaosbook, 2015.
  4. Jiawei Han, Micheline Kamber, Jian Pei, Co-Author, Sa-Bum Jung, Yong-Keun Song, Translation, "Data Mining: Concepts and Techniques", pp.577-582, Acorn, 2015.
  5. Michael Negnevitsky, Author, Yong-Hyuk Kim, Translation, "Artificial Intelligence 2nd Ed", p.269, Hanbit Academy, Inc., 2013.
  6. Dong-Hyun Kim, Chan-Young Park, Gene-Oh Oh, Hwan-Jo Yu, "Research on Cold-Start Recommendation" Communications of KIISE, Vol. 34, No. 6, pp. 16-21, 2016.
  7. Hyang-Soon Joun, Sang-Yong Lee, "Technical Entrepreneurchip Education Service Quality Evaluation System based on FAHP", Journal of Digital Convergence, Vol. 13, No. 10, pp. 509-516, 2015. https://doi.org/10.14400/JDC.2015.13.10.509
  8. Hae-Chun Rhee, Kyu-Yong Lee, In-Jae Lee, "Fuzzy Set Theory As a Method of Policy Evaluation: With a Case of Job Creation Policy", The Korea Association for Policy Studies, Vol. 16, No. 3, pp. 67-91, 2007.
  9. Hong-Bok Lee, Dong-Ok Won, Seong-Whan Lee, "Collaborative Filtering Recommender System With Clustering and Histogram", Proceedings of KISS Winter Conference 2016, pp. 588-590, 2016.
  10. Jae-Taek Oh, Sang-Yong Lee, "AHP-Based Recommendation System of Mobile Games Reflecting User Preferences", Journal of Digital Convergence, Vol. 15, No. 1, pp. 427-433, 2017. https://doi.org/10.14400/JDC.2017.15.1.427
  11. Jae-Taek Oh, "Fuzzy-AHP Based Mobile Games Recommendation System Using Bayesian Network", Dept. of Computer Science and Engineering the Graduate School of Kongju National University, 2017.
  12. Jee-Woon Ha, Hyung-Wook Kim, Sang-Wook Kim, "Data Imputation Methods for Effective Collaborative Filtering", Communications of KIISE, Vol. 34, No. 6, pp. 8-15, 2016.
  13. Noo-Ri Kim, Han-Byul Bang, Bedeuro Kim, Sei-Hee Lee, Jee-Hyoung Lee, "Research Trends in Context-aware Recommender Systems", Communications of KIISE, Vol. 34, No. 6, pp. 22-29, 2016.
  14. You-Jin Park, "Analyzing the Efficiency of SCM Using Fuzzy-AHP/DEA", Dept. of Business Administration the Graduate School of Yonsei University, 2013.
  15. A. Vattani, "K-means Requires Exponentially Many Iterations Even in the Plane", Proceedings of the Twenty-Fifth Symposium on Computational Geometry 2009, pp. 324-332, 2009.
  16. Da-Yong Chang, "Applications of the Extent Analysis Method on Fuzzy AHP", European Journal of Operational Research, Vol. 95, No. 3, pp. 649-655, 1996. https://doi.org/10.1016/0377-2217(95)00300-2
  17. G. Adomavicius, A. Tuzhilin, "Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-art and Possible Extensions", IEEE Transaction on Knowledge Data Engineering, Vol. 17, No. 6, pp. 734-749, 2005. https://doi.org/10.1109/TKDE.2005.99
  18. S. K. Reddy, V. Swaminathan, C. M. Motley, "Exploring the Determinants of Broadway Show Success", Journal of Marketing Research, Vol. 35, No. 3, pp. 296-315, 1998. https://doi.org/10.2307/3152029
  19. http://movie.naver.com/movie/sdb/rank/rmovie.nhn
  20. http://www.kobis.or.kr/kobis/business/main/main.do