DOI QR코드

DOI QR Code

A Survey of the Modeling of the Production Planning and Scheduling in an Integrated Steel Mill

일관제철소 생산계획 및 일정계획 모형에 관한 조사연구

  • Seong, Deokhyun (Division of Business Administration, Pukyong National University)
  • Received : 2017.08.25
  • Accepted : 2017.11.03
  • Published : 2017.11.30

Abstract

Global optimization that considers the processes at integrated steel mills is more important than the local optimization to improve the efficiency of a single process. Research utilizing mathematical models at integrated steel mills predominantly focus on solving problems solely for a specific process or focusing on what techniques are applied to. However, it is important to define the problems that must be solved at the steelworks, identify the objectives and constraints that can be modeled, and selection of methodologies that can be applied to the problems. The purpose of this study is to investigate the problems in improving efficiency at integrated steel mills from the viewpoint of production & operations management. We review the research have been conducted in order to solve those problems. We classified the research into 6 categories and suggested future research direction based on the global optimization. It is expected that research themes for improving the efficiency at integrated steel mills will be derived.

일관제철소의 모든 공정은 서로 연결됨으로써 단일공정에서의 효율성을 향상시킬 수 있는 최적화도 중요하지만 무엇보다도 전체 공정의 연결 관점에서의 최적화가 중요하다. 일관제철소에서의 경영과학 모형 적용에 관한 조사연구는 대부분 특정 공정만을 대상으로 문제해결을 위한 모형에 집중하고 있거나 혹은 일관제철소에서 발생되는 문제에 대해 어떤 기법이 적용되고 있는지에 대한 조사에 집중되고 있다. 그러나 이보다는 일관제철소에서 해결되어야만 하는 문제를 우선 정의하고, 이를 모형화 할 수 있는 목적과제약조건 등에 대해 파악하며, 현실적으로 적용 가능한 해를 구할 수 있는 방법론이무엇인지에 대한 연구가 어떻게 이루어져 왔는지에 대해 조사가 필요하다. 이 연구에서는 일관제철소 공정을 대상으로 생산운영관리관점에서의 효율성 향상을 위해 필요한 연구가 무엇인지를 기술한 후, 이를 해결하기 위해 어떤 연구들이 진행되어 왔는지에 대해 조사하였다. 이를 위해 6가지 영역으로 분류하여 기존 연구에 대해 조사하였으며, 전체최적화 관점에서 향후의 연구방안에 대해 제시하였다. 이를 바탕으로 일관제철소에서의 공정 효율성 제고를 위한 연구주제가도출될 수 있을 것으로 기대된다.

Keywords

References

  1. A Compilation Society of Glossary of Metal Terms, Glossary of metal terms, http://terms.naver.com/list.nhn?cid=42325&categoric=42325.
  2. G. A. McCulloch, R. Bandyopadhyay, "Application of operational research in production problems in the steel industry," Int J Prod Res, 10(1), pp. 77-91, 1972. DOI: https://doi.org/10.1080/00207547208929907
  3. J. Yamasaki, T. Iwamura, S. Arai, "Artificial Intelligence Applications at Kawasaki Steel," Kawasaki Steel Giho, 23(3), pp. 171-177, 1991.
  4. S. Basu, G. Dutta, R. Seth, "A survey of the application of non-optimization techniques in an integrated steel plants," preparation for submission to Interactive Transactions of Operation Research, www.iimahd.ernet.in/-goutam/survey2.htm, 2004.
  5. G. Dutta, R. Fourer, "A Survey of Mathematical Programming Applications in Integrated Steel Plants," M&SOM, 3(4), pp. 387-400, 2001. DOI: https://doi.org/10.1287/msom.3.4.387.9972
  6. L. Tang, J. Liu, A. Rong, Z. Yang, "A review of planning and scheduling systems and methods for integrated steel production," Eur J Oper Res, 133(1), pp. 1-20, 2001. DOI: https://doi.org/10.1016/S0377-2217(00)00240-X
  7. A. S. Maqsood, P. Helo, Y. Kristianto, "Steel supply chain management by simulation modelling," Benchmarking, 20(1), pp. 45-61, 2013. DOI: https://doi.org/10.1108/14635771311299489
  8. A. S. Zadeh, R. Sahraeian, S. M. Homayouni, "A dynamic multi-commodity inventory and facility location problem in steel supply chain network design," The International Journal of Advanced Manufacturing Technology, 70(5-8), pp. 1267-1282, 2014. DOI: https://doi.org/10.1007/s00170-013-5358-2
  9. B. Lin, X. Wang, "Exploring Energy Efficiency in China's Iron and Steel Industry: A Stochastic Frontier Approach," Energy Policy, 72, pp. 87-96, 2014. DOI: https://doi.org/10.1016/j.enpol.2014.04.043
  10. J. W. Kim, J. Y. Lee, J. Y. Kim, H. K. Lee, "Sources of Productive Efficiency: International Comparison of Iron and Steel Firms," Resources Policy, 31(4), pp. 239-246, 2006. DOI: https://doi.org/10.1016/j.resourpol.2007.03.003
  11. L. Deng, Z. Qiu, P. Liu, W. Xiao, "Optimal coordinated strategy analysis for the procurement logistics of a steel group," Mathematical Problems in Engineering, 2014, 2014.
  12. M. Seifbarghy, M. R. Akbari, M. S. Sajadieh, "Analyzing the supply chain using SCOR model in a steel producing company," The 40th International Conference on Computers & Indutrial Engineering, pp. 1-6, 2010. DOI: https://doi.org/10.1109/ICCIE.2010.5668328
  13. T. Fabian, "A Linear Programming Model of Integrated Iron and Steel Production," Management Science, 4(4), pp. 415-449, 1958. DOI: https://doi.org/10.1287/mnsc.4.4.415
  14. A. Sharma, S. K. Sinha, "Product mix optimization: a case study of integrated steel plants of SAIL," Opsearch, 28, pp. 188-201, 1991.
  15. M. Singer, P. Donoso, "Strategic decision-making at a steel manufacturer assisted by linear programming," Journal of Business Research, 59(3), pp. 387-390, 2006. DOI: https://doi.org/10.1016/j.jbusres.2005.09.017
  16. M. R. Soltany, A. R. Sayadi, M. Monjezi, M. Hayati, "Productivity Improvement in a Steel Industry using Supply Chain Management Technique," IJMGE, 47(1), pp. 51-59, 2013. DOI: https://doi.org/10.22059/ijmge.2013.50090
  17. P. Letmathe, N. Balakrishnan, "Environmental considerations on the optimal product mix," Eur J Oper Res, 167(2), pp. 398-412, 2005. DOI: https://doi.org/10.1016/j.ejor.2004.04.025
  18. J. Szekely, W. H. Ray, S. Fang, "On the optimization of the primary end of integrated steelplants," Can Metall Q, 12(2), pp. 177-184, 1973. DOI: https://doi.org/10.1179/cmq.1973.12.2.177
  19. W. H. Ray, J. Szekely, M. B. Ajinkya, "Optimization of the ironmaking-steelmaking sequence in an integrated steel plant having non-linear and distributed elements," Metallurgical Transactions, 4(6), pp. 1607-1614, 1973. DOI: https://doi.org/10.1007/BF02668015
  20. G. T. Mackulak, C. L. Moodie, T. J. Williams, "Computerized hierarchical production control in steel manufacture," Int J Prod Res, 18(4), pp. 455-465, 1980. DOI: https://doi.org/10.1080/00207548008919682
  21. C. Lin, C. L. Moodie, "Hierarchical production planning for a modern steel manufacturing system," Int J Prod Res, 27(4), pp. 613-628, 1989. DOI: https://doi.org/10.1080/00207548908942572
  22. M. Larsson, J. Dahl, "Reduction of the Specific Energy Use in an Integrated Steel Plant-The Effect of an Optimization Model," ISIJ Int, 43(10), pp. 1664-1673, 2003. DOI: https://doi.org/10.2355/isijinternational.43.1664
  23. G. P. Sinha, B. S. Chandrasekaran, N. Mitter, et al., "Strategic and Operational Management with Optimization at Tata Steel," Interfaces, 25(1), pp. 6-19, 1995. DOI: https://doi.org/10.1287/inte.25.1.6
  24. B. Bieda. "Application of Stochastic Approach Based on Monte Carlo (MC) Simulation for Life Cycle Inventory (LCI) to the Steel Process Chain: Case Study," Science of The Total Environment, 481, pp. 649-655, 2014. DOI: https://doi.org/10.1016/j.scitotenv.2013.10.123
  25. A. Iosif, F. Hanrot, D. Ablitzer, "Process Integrated Modelling for Steelmaking Life Cycle Inventory Analysis," Environmental3Impact Assessment Review, 28(7), pp. 429-438, 2008. DOI: https://doi.org/10.1016/j.eiar.2007.10.003
  26. H. Kong, E. Qi, H. Li, G. Li, X. Zhang, "An MILP model for optimization of byproduct gases in the integrated iron and steel plant," Appl Energy, 87(7), pp. 2156-2163, 2010. DOI: https://doi.org/10.1016/j.apenergy.2009.11.031
  27. H. Li, J. Shang, "Integrated model for production planning in a large iron and steel manufacturing environment," Int J Prod Res, 39(9), pp. 2037-2062, 2001. DOI: https://doi.org/10.1080/00207540110035200
  28. R. J. Paul, T. S. Chanev, "Optimising a complex discrete event simulation model using a genetic algorithm," Neural Computing & Applications, 6(4), pp. 229-237, 1997. DOI: https://doi.org/10.1007/BF01501509
  29. M. M. Fioroni, L. A. G. Franzese, E. L. M. Harano, et al., "Simulation based decision for steelmaking operations challenges," Proceedings of the Winter Simulation Conference, 2005, p 6, 2005. DOI: https://doi.org/10.1109/WSC.2005.1574566
  30. A. Azadeh, A. Maghsoudi, "Optimization of production systems through integration of computer simulation, design of experiment, and Tabu search: the case of a large steelmaking workshop," The International Journal of Advanced Manufacturing Technology, 48(5), pp. 785-800, 2010. DOI: https://doi.org/10.1007/s00170-009-2305-3
  31. D. Seong, M. S. Suh, "An integrated modelling approach for raw material management in a steel mill," Production Planning & Control, 23(12), pp. 922-934, 2012. DOI: https://doi.org/10.1080/09537287.2011.586651
  32. D. Seong, G. Byeon, "The Efficiency Assessment of the Iron Ore Brands Using DEA-AR Model in an Integrated Steel Mill," Journal of the Korea society of IT services, 12(4), pp. 255-265, 2013. https://doi.org/10.9716/KITS.2013.12.4.255
  33. D. Seong, M. Suh, "The Efficiency Evaluation of Coking Coals Using Data Envelopment Analysis," Journal of the Korea society of IT services, 10(2), pp. 177-188, 2011. https://doi.org/10.9716/KITS.2011.10.2.177
  34. Z. Gao, L. Tang, "A Multi-Objective Model for Purchasing of Bulk Raw Materials of a Large-Scale Integrated Steel Plant," International Journal of Production Economics, 83(3), pp. 325-334, 2003. DOI: https://doi.org/10.1016/S0925-5273(02)00373-0
  35. Z. Gao, L. Tang, "Combine column generation with GUB to solve the steel-iron raw materials purchasing lot-sizing problem," Acta Automatica Sinica, 30(1), pp. 20-26, 2004.
  36. A. Samolejov, J. Feliks, R. Lenort, P. Besta, "A hybrid decision support system for iron ore supply," Metal, 51(1), pp. 91-93, 2012.
  37. Z. H. Luo, L.X. Tang, W. Y. Zhang, "Using Branch-and-Price Algorithm to Solve Raw Materials Logistics Planning Problem in Iron and Steel Industry," 2007 International Conference on Management Science and Engineering, pp. 529-536, 2007. DOI: https://doi.org/10.1109/ICMSE.2007.4421901
  38. D. Gerardi, T. E. Marlin, C. L. E. Swartz, "Optimization of Primary Steelmaking Purchasing and Operation under Raw Material Uncertainty," Ind Eng Chem Res, 52(35), pp. 12383-12398, 2013. DOI: https://doi.org/10.1021/ie3035543
  39. J. Lu, M. Fu, J. Sha, "Research of import iron ore logistics system based on the minimum cost theory," Proceedings of ICSSSM '05 2005 International Conference on Services Systems and Services Management, 2005 1, pp. 396 Vol. 1, 2005. DOI: https://doi.org/10.1109/ICSSSM.2005.1499502
  40. B. Kim, J. Koo, B. S. Park, "A raw material storage yard allocation problem for a large-scale steelworks," The International Journal of Advanced Manufacturing Technology, 41(9), pp. 880-884, 2009. DOI: https://doi.org/10.1007/s00170-008-1538-x
  41. S. Li, L. X. Tang, "Improved Tabu Search Algorithms for Storage Space Allocation in Integrated Iron and Steel Plant," 2005 ICSC Congress on Computational Intelligence Methods and Applications, p. 6, 2005. DOI: https://doi.org/10.1109/CIMA.2005.1662319
  42. Hyundai Steel Company, Hyundai Steel Company, https://www.hyundai-steel.com/en/she/environment/eco-friendlyfacilities.hds
  43. K. Bernatzki, M. R. Bussieck, T. Lindner, M. E. Lubbecke, "Optimal scrap combination for steel production," Operations-Research-Spektrum, 20(4), pp. 251-258, 1998. DOI: https://doi.org/10.1007/BF01539743
  44. B. Vahdani, M. Naderi-Beni, "A mathematical programming model for recycling network design under uncertainty: an interval-stochastic robust optimization model," The International Journal of Advanced Manufacturing Technology, 73(5), pp. 1057-1071, 2014. DOI: https://doi.org/10.1007/s00170-014-5852-1
  45. M. Chen, W. Wang, "A linear programming model for integrated steel production and distribution planning," Int Jrnl of Op &Prod Mnagemnt, 17(6), pp. 592-610, 1997. DOI: https://doi.org/10.1108/01443579710167276
  46. R. N. Roy, K. K. Guin, "A proposed model of JIT purchasing in an integrated steel plant," Int J Prod Econ, 59(1), pp. 179-187, 1999. DOI: https://doi.org/10.1016/S0925-5273(98)00099-1
  47. S. H. Song, "A nested column generation algorithm to the meta slab allocation problem in the steel making industry," Int J Prod Res, 47(13), pp. 3625-3638, 2009. DOI: https://doi.org/10.1080/00207540801968625
  48. J. Dorn, W. Slany. A flow shop with compatibility constraints in a steelmaking plant,1994.
  49. H. Missbauer, W. Hauber, W. Stadler, "A scheduling system for the steelmaking-continuous casting process. A case study from the steel-making industry," Int J Prod Res, 47(15), pp. 4147-4172, 2009. DOI: https://doi.org/10.1080/00207540801950136
  50. L. Wei, L. SUN, "Steel-making and continuous/ingot casting scheduling of mixed charging plan based on batch splitting policy," Journal of Iron and Steel Research, International, 19(2), pp. 17-21, 2012. DOI: https://doi.org/10.1016/S1006-706X(12)60054-5
  51. V. Kumar, S. Kumar, M. K. Tiwari, F. T. S. Chan, "Auction-based approach to resolve the scheduling problem in the steel making process," Int J Prod Res, 44(8), pp. 1503-1522, 2006. DOI: https://doi.org/10.1080/00207540500434713
  52. S. Zanoni, L. Zavanella, "Model and analysis of integrated production-inventory system: The case of steel production," Int J Prod Econ, 93, pp. 197-205, 2005. DOI: https://doi.org/10.1016/j.ijpe.2004.06.018
  53. L. Tang, P. B. Luh, J. Liu, L. Fang, "Steel-making process scheduling using Lagrangian relaxation," Int J Prod Res, 40(1), pp. 55-70, 2002. DOI: https://doi.org/10.1080/00207540110073000
  54. A Bellabdaoui, J. Teghem, "A Mixed-Integer Linear Programming Model for the Continuous Casting Planning," International Journal of Production Economics, 104(2), pp. 260-270, 2006. DOI: https://doi.org/10.1016/j.ijpe.2004.10.016
  55. R. E. Box, D. G. Herbe, "A Scheduling Model for LTV Steel's Cleveland Works' Twin Strand Continuous Slab Caster," Interfaces, 18(1), pp. 42-56, 1988. DOI: https://doi.org/10.1287/inte.18.1.42
  56. N. Vaessen, L. Van Nerom, "Continuous caster planning using advanced search algorithms," Steel Times International, 18(1), pp. 18-19, 1994.
  57. L. Tang, J. Liu, A. Rong, Z. Yang, "A mathematical programming model for scheduling steelmaking-continuous casting production," Eur J Oper Res, 120(2), pp. 423-435, 2000. DOI: https://doi.org/10.1016/S0377-2217(99)00041-7
  58. I. Harjunkoski, I. E. Grossmann, "A decomposition approach for the scheduling of a steel plant production," Comput Chem Eng, 25(11), pp. 1647-1660, 2001. DOI: https://doi.org/10.1016/S0098-1354(01)00729-3
  59. P. P. Mohanty, "An agent-oriented approach to resolve the production planning complexities for a modern steel manufacturing system," The International Journal of Advanced Manufacturing Technology, 24(3), pp. 199-205, 2004. DOI: https://doi.org/10.1007/s00170-003-1673-3
  60. D. A. Linkens, Y. Y. Yang, "Scheduling and optimization for heating of steel soaking pits: case study for hybrid systems," IEEE Proceedings-Science, Measurement and Technology, 142(5), pp. 362-370, 1995. DOI: https://doi.org/10.1049/ip-smt:19952056
  61. J. Storck, "Exploring improvement trajectories with dynamic process cost modelling: a case from the steel industry," Int J Prod Res, 48(12), pp. 3493-3511, 2010. DOI: https://doi.org/10.1080/00207540902725288
  62. L. Tang, P. Che, J. Liu, "A stochastic production planning problem with nonlinear cost," Comput Oper Res, 39(9), pp. 1977-1987, 2012. DOI: https://doi.org/10.1016/j.cor.2011.09.007
  63. R. As'ad, K. Demirli, "A bilinear programming model and a modified branch-and-bound algorithm for production planning in steel rolling mills with substitutable demand," Int J Prod Res, 49(12), pp. 3731-3749, 2011. DOI: https://doi.org/10.1080/00207541003690116
  64. R. P. Mohanty, R. Singh, "A Hierarchical Production Planning Approach for a Steel Manufacturing System," Int Jrnl of Op & Prod Mnagemnt, 12(5), pp. 69-78, 1992. DOI: https://doi.org/10.1108/01443579210011426
  65. B. Sasidhar, K. K. Achary, "A multiple arc network model of production planning in a steel mill," Int J Prod Econ, 22(3), pp. 195-202, 1991. DOI: https://doi.org/10.1016/0925-5273(91)90095-B
  66. H. Yanagisawa, "The material allocation problem in the steel industry," IBM Journal of Research and Development, 51(3.4), pp. 363-374, 2007. DOI: https://doi.org/10.1147/rd.513.0363
  67. B. Denton, D. Gupta, K. Jawahir, "Managing Increasing Product Variety at Integrated Steel Mills," Interfaces, 33(2), pp. 41-53, 2003. DOI: https://doi.org/10.1287/inte.33.2.41.16373
  68. L. Tang, J. Luo, J. Liu, "Modelling and a tabu search solution for the slab reallocation problem in the steel industry," Int J Prod Res, 51(14), pp. 4405-4420, 2013. DOI: https://doi.org/10.1080/00207543.2013.788796
  69. M. Vanhoucke, D. Debels, "A finite-capacity production scheduling procedure for a Belgian steel company," Int J Prod Res, 47(3), pp. 561-584, 2009. DOI: https://doi.org/10.1080/00207540701441970
  70. I. Assaf, M. Chen, J. Katzberg, "Steel production schedule generation," Int J Prod Res, 35(2), pp. 467-477, 1997. DOI: https://doi.org/10.1080/002075497195858
  71. F. Baccus, P. Cowling, N. Vaessen, L. Van Nerom, "Optimal rolling mill planning at Usines Gustave Bool," Steel Times, p S4, 1995.
  72. X. Chen, W. Wan, X. Xu, "Modeling Rolling Batch Planning as Vehicle Routing Problem with Time Windows," Computers & Operations Research, 25(12), pp. 1127-1136, 1998. DOI: https://doi.org/10.1016/S0305-0548(98)00018-5
  73. L. Tang, J. Liu, A. Rong, Z. Yang, "A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex," Eur J Oper Res, 124(2), pp. 267-282, 2000. DOI: https://doi.org/10.1016/S0377-2217(99)00380-X
  74. S. Jia, J. Zhu, G. Yang, J. Yi, B. Du, "A decomposition-based hierarchical optimization algorithm for hot rolling batch scheduling problem," The International Journal of Advanced Manufacturing Technology, 61(5), pp. 487-501, 2012. DOI: https://doi.org/10.1007/s00170-011-3749-9
  75. S. J. Jia, J. Yi, G. K. Yang, B. Du, J. Zhu, "A multi-objective optimization algorithm for the hot rolling batch scheduling problem," Int J Prod Res, 51(3), pp. 667-681, 2013. DOI: https://doi.org/10.1080/00207543.2011.654138
  76. X. Wang, L. Tang, "Integration of batching and scheduling for hot rolling production in the steel industry," The International Journal of Advanced Manufacturing Technology, 36(5), pp. 431-441, 2008. DOI: https://doi.org/10.1007/s00170-006-0857-z
  77. M. S. Suh, A. Lee, Y. J. Lee, Y. K. Ko, "Evaluation of ordering strategies for constraint satisfaction reactive scheduling," Decis Support Syst, 22(2), pp. 187-197, 1998. DOI: https://doi.org/10.1016/S0167-9236(97)00052-3
  78. P. Cowling, "A Flexible Decision Support System for Steel Hot Rolling Mill Scheduling," Computers &Industrial Engineering, 45(2), pp. 307-321, 2003. DOI: https://doi.org/10.1016/S0360-8352(03)00038-X
  79. L. Lopez, M. W. Carter, M. Gendreau, "The hot strip mill production scheduling problem: A tabu search approach," Eur J Oper Res, 106(2-3), pp. 317-335, 1998. DOI: https://doi.org/10.1016/S0377-2217(97)00277-4
  80. I. Mattik, P. Amorim, H. Gunther, "Hierarchical scheduling of continuous casters and hot strip mills in the steel industry: a block planning application," Int J Prod Res, 52(9), pp. 2576-2591, 2014. DOI: https://doi.org/10.1080/00207543.2013.860248
  81. H. S. Lee, S. S. Murthy, S. W. Haider, D. V. Morse, "Primary production scheduling at steelmaking industries," IBM Journal of Research and Development, 40(2), pp. 231-252, 1996. DOI: https://doi.org/10.1147/rd.402.0231
  82. S. Sato, T. Yamaoka, Y. Aoki, T. Ueda, "Development of integrated production scheduling system for iron and steel works," Int J Prod Res, 15(6), pp. 539-552, 1977. DOI: https://doi.org/10.1080/00207547708943148
  83. P. Cowling, W. Rezig, "Integration of continuous caster and hot strip mill planning for steel production," Journal of Scheduling, 3(4), pp. 185-208, 2000. DOI: https://doi.org/10.1002/1099-1425(200007/08)3:4<185::AID-JOS42>3.0.CO;2-G
  84. P. Appelqvist, J. Lehtonen, "Combining optimisation and simulation for steel production scheduling," Jnl of Manu Tech Mnagmnt, 16(2), pp. 197-210, 2005. DOI: https://doi.org/10.1108/17410380510576831
  85. G. Y. Xiong, H. Petri, "Supply Chain Inventory Control in Iron & Steel Industry: A Case Study," In Granular Computing, 2005 IEEE International Conference on IEEE, pp. 314-317, 2005. 10.1109/GRC.2005.1547293.
  86. S. H. Melouk, N. K. Freeman, D. Miller, M. Dunning, "Simulation optimization-based decision support tool for steel manufacturing," Int J Prod Econ, 141(1), pp. 269-276, 2013. DOI: https://doi.org/10.1016/j.ijpe.2012.08.001
  87. B. Denton, D. Gupta, "Strategic inventory deployment in the steel industry," IIE Transactions, 36(11), pp. 1083-1097, 2004. DOI: https://doi.org/10.1080/07408170490500663
  88. V. Kumar, S. Kumar, M. K. Tiwari, F. Chan, "Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach," Int J Prod Res, 44(11), pp. 2245-2263, 2006. DOI: https://doi.org/10.1080/00207540500459678
  89. X. Liu, J. Xu, "Research on the Purchasing Portfolio Approach for Steel Industry," 2008 7th World Congress on Intelligent Control and Automation, pp. 4911-4916, 2008. DOI: https://doi.org/10.1109/WCICA.2008.4593721
  90. P. Kraljic, "Purchasing must become supply management," Harv Bus Rev, 61(5), pp. 109-117, 1983.
  91. C. J. Gelderman, A. J. Weele, "Strategic direction through purchasing portfolio management: a case study," Journal of Supply Chain Management, 38(1), pp. 30-37, 2002. DOI: https://doi.org/10.1111/j.1745-493X.2002.tb00127.x
  92. K. Feng, H. Wang, A. Xu, D. He, "Endpoint temperature prediction of molten steel in RH using improved case-based reasoning," International Journal of Minerals, Metallurgy, and Materials, 20(12), pp. 1148-1154, 2013. DOI: https://doi.org/10.1007/s12613-013-0848-7
  93. I. Ahmad, M. Kano, S. Hashers, H. Kitada, N. Murata, "Gray-box modeling for prediction and control of molten steel temperature in tundish," J Process Control, 24(4), pp. 375-382, 2014. DOI: https://doi.org/10.1016/j.jprocont.2014.01.018
  94. J. H. Kim, N. K. Oh, J. W. Park, "Temperature Prediction System for Steel Making Processes using Fuzzy Regression Model," Proceedings of The Korean Operations Research and Management Science Society (KORMS), pp. 181-185, 2002.
  95. F. J. Vasko, D. D. Newhart, K. L. Stott Jr, "A hierarchical approach for one-dimensional cutting stock problems in the steel industry that maximizes yield and minimizes overgrading," Eur J Oper Res, 114(1), pp. 72-82, 1999. DOI: https://doi.org/10.1016/S0377-2217(98)00035-6
  96. S. Dash, J. Kalagnanam, C. Reddy, S. H. Song, "Production design for plate products in the steel industry," IBM Journal of Research and Development, 51(3.4), pp. 345-362, 2007. 10.1147/rd.513.0345.
  97. J. Wy, B. Kim, "Two-staged guillotine cut, two-dimensional bin packing optimization with flexible bin size for steel mother plate design," Int J Prod Res, 48(22), pp. 6799-6820, 2010. DOI: https://doi.org/10.1080/00207540903317523
  98. K. H. Lee, S. Y. Min, J. H. Lee, "Development of robotic system based on RFID scanning for efficient inventory management of thick plates," J of the Korean Academia-Industrial Cooperation Soc., 17(10), pp. 1-8, 2016. DOI: https://doi.org/10.5762/KAIS.2016.17.7.1
  99. K. A. Singh, M. K. Tiwari, "Modelling the slab stack shuffling problem in developing steel rolling schedules and its solution using improved Parallel Genetic Algorithms," Int J Prod Econ, 91(2), pp. 135-147, 2004. DOI: https://doi.org/10.1016/j.ijpe.2003.07.005
  100. L. Tang, J. Liu, A. Rong, Z. Yang, "Modelling and a genetic algorithm solution for the slab stack shuffling problem when implementing steel rolling schedules," Int J Prod Res, 40(7), pp. 1583-1595, 2002. DOI: https://doi.org/10.1080/00207540110110118424
  101. L. Tang, R. Zhao, J. Liu, "Models and algorithms for shuffling problems in steel plants," Naval Research Logistics (NRL), 59(7), pp. 502-524, 2012. DOI: https://doi.org/10.1002/nav.21503
  102. G. Zapfel, M. Wasner, "Warehouse sequencing in the steel supply chain as a generalized job shop model," Int J Prod Econ, 104(2), pp. 482-501, 2006. DOI: https://doi.org/10.1016/j.ijpe.2004.10.005