DOI QR코드

DOI QR Code

Antioxidant Enzyme Activity and Anti-Adipogenic Effects of (-)-Epigallocatechin-3-Gallate in 3T3-L1 Cells

(-)-Epigallocatechin-3-Gallate의 3T3-L1 세포에서 항산화 효소 활성 및 지방세포 분화 억제 효과

  • Kim, Younghwa (School of Food Biotechnology and Nutrition, Kyungsung University)
  • 김영화 (경성대학교 식품응용공학부)
  • Received : 2017.08.02
  • Accepted : 2017.08.08
  • Published : 2017.11.30

Abstract

Obesity contributes to the development of diseases, such as type II diabetes, hypertension, coronary heart disease, and cancer. In addition, oxidative stress caused by reactive oxygen species (ROS) is recognized widely as a contributing factor in the development of chronic diseases. This study was examined the antioxidant and anti-adipogenic activities of epigallocatechin-3-gallate (EGCG) in 3T3-L1 preadipocytes. 3T3-L1 cells were differentiated with or without EGCG for 6 days. The production of glutathione (GSH) and the activities of the antioxidant enzymes, such as glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were measured. EGCG inhibited significantly the lipid accumulation and the expression of adipogenic specific proteins including CCAAT/enhancer binding protein ${\alpha}$ and adipocyte fatty acid binding protein. The production of intracellular ROS was decreased significantly by EGCG in 3T3-L1 cells. EGCG increased the GSH production and the activities of GPx, GR, CAT, and SOD. Moreover, EGCG increased the protein expression of glutamate-cysteine ligase and heme oxygenase-1 in 3T3-L1 cells. These results suggest that EGCG increased the activity and expression of antioxidant enzymes and suppressed the lipid accumulation in 3T3-L1 cells. Therefore, the use of phytochemicals that can maintain the GSH redox balance in adipose tissue could be promising for reducing obesity.

Epigallocatechin-3-gallate(EGCG)는 녹차에 함유된 flavonoid 계열 화합물로, 녹차의 대표적인 유효성분으로 알려져 있다. 본 연구는 3T3-L1 세포에서 EGCG의 항비만 작용 및 항산화 효소 활성을 평가하였다. EGCG는 지방세포 분화를 유의적으로 억제하였으며, 지방세포 분화와 관련된 단백질인 $C/EBP{\alpha}$와 aP2의 발현을 감소시켰다. 동시에 EGCG는 GSH의 활성을 유도하였으며, 항산화 효소인 SOD, CAT, GPx 및 GR의 활성을 증가시켰다. EGCG는 지방세포 분화 동안 활성산소종의 형성을 감소시켰다. 체내 phase II 효소인 HO-1과 GCLC는 EGCG에 의해 발현이 유도되었다. 따라서 EGCG는 3T3-L1 세포에서 항산화 효소의 활성화를 유도하며 동시에 지방세포로의 분화를 억제하는 것으로 나타났다. 또한, EGCG는 활성산소종의 생성을 억제하였으며, 이는 EGCG의 항산화 작용에 의한 지방세포 분화 억제 작용이 관련이 있는 것으로 판단된다. EGCG에 의한 항비만 효과와 항산화 작용을 연구한 본 연구는 녹차를 활용한 체지방 감소 효능을 지닌 식품 개발에 기초 자료로 활용될 수 있을 것으로 생각된다.

Keywords

References

  1. Visscher TLS, Seidell JC. 2001. The public health impact of obesity. Annu Rev Public Health 22: 355-375. https://doi.org/10.1146/annurev.publhealth.22.1.355
  2. Lee WJ, Koh EH, Won JC, Kim MS, Park JY, Lee KU. 2005. Obesity: The role of hypothalamic AMP-activated protein kinase in body weight regulation. Int J Biochem Cell Biol 37: 2254-2259. https://doi.org/10.1016/j.biocel.2005.06.019
  3. Darlington GJ, Ross SE, MacDougald OA. 1998. The role of C/EBP genes in adipocyte differentiation. J Biol Chem 273: 30057-30060. https://doi.org/10.1074/jbc.273.46.30057
  4. Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM. 2002. $C/EBP{\alpha}$ induces adipogenesis through $PPAR{\gamma}$: a unified pathway. Genes Dev 16: 22-26. https://doi.org/10.1101/gad.948702
  5. Lee OH, Seo MJ, Choi HS, Lee BY. 2012. Pycnogenol(R) inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses. Phytother Res 26: 403-411.
  6. Seo MJ, Choi HS, Lee OH, Lee BY. 2013. Grateloupia lanceolata (Okamura) Kawaguchi, the edible red seaweed, inhibits lipid accumulation and reactive oxygen species production during differentiation in 3T3-L1 cells. Phytother Res 27: 655-663. https://doi.org/10.1002/ptr.4765
  7. Chen XL, Kunsch C. 2004. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr Pharm Des 10: 879-891. https://doi.org/10.2174/1381612043452901
  8. Choi Y, Lee SM, Kim Y, Yoon J, Jeong HS, Lee J. 2010. A tocotrienol-rich fraction from grape seeds inhibits oxidative stress induced by tert-butyl hydroperoxide in HepG2 cells. J Med Food 13: 1240-1246. https://doi.org/10.1089/jmf.2009.1342
  9. Messarah M, Boulakoud MS, Boumendjel A, Abdennour C, El Feki A. 2007. The impact of thyroid activity variations on some oxidizing-stress parameters in rats. C R Biol 330: 107-112. https://doi.org/10.1016/j.crvi.2006.11.004
  10. Zhao CR, Gao ZH, Qu XJ. 2010. Nrf2-ARE signaling pathway and natural products for cancer chemoprevention. Cancer Epidemiol 34: 523-533. https://doi.org/10.1016/j.canep.2010.06.012
  11. Jaiswal AK. 2004. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36: 1199-1207. https://doi.org/10.1016/j.freeradbiomed.2004.02.074
  12. Graham HN. 1992. Green tea composition, consumption, and polyphenol chemistry. Prev Med 21: 334-350. https://doi.org/10.1016/0091-7435(92)90041-F
  13. Chan CY, Wei L, Castro-Munozledo F, Koo WL. 2011. (-)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression. Life Sci 89: 779-785. https://doi.org/10.1016/j.lfs.2011.09.006
  14. Wang H, Joseph JA. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27: 612-616. https://doi.org/10.1016/S0891-5849(99)00107-0
  15. Baker MA, Cerniglia GJ, Zaman A. 1990. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190: 360-365. https://doi.org/10.1016/0003-2697(90)90208-Q
  16. Smith IK, Vierheller TL, Thorne CA. 1988. Assay of glutathione reductase in crude tissue homogenates using 5,5'-dithiobis(2-nitrobenzoic acid). Anal Biochem 175: 408-413. https://doi.org/10.1016/0003-2697(88)90564-7
  17. Flohe L, Gunzler WA. 1984. Assays of glutathione peroxidase. Methods Enzymol 105: 114-121.
  18. Fossati P, Prencipe L, Berti G. 1980. Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26: 227-231.
  19. Choi JH, Park YH, Lee IS, Lee SP, Yu MH. 2013. Antioxidant activity and inhibitory effect of Aster scaber Thunb. extract on adipocyte differentiation in 3T3-L1 cells. Korean J Food Sci Technol 45: 356-363. https://doi.org/10.9721/KJFST.2013.45.3.356
  20. Moon HS, Chung CS, Lee HG, Kim TG, Choi YJ, Cho CS. 2007. Inhibitory effect of (-)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity 15: 2571-2582. https://doi.org/10.1038/oby.2007.309
  21. Lin J, Della-Fera MA, Baile CA. 2005. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes Res 13: 982-990. https://doi.org/10.1038/oby.2005.115
  22. Liu HS, Chen YH, Hung PF, Kao YH. 2006. Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. Am J Physiol Endocrinol Metab 290: E273-E281. https://doi.org/10.1152/ajpendo.00325.2005
  23. Lee H, Lee YJ, Choi H, Ko EH, Kim JW. 2009. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem 284: 10601-10609. https://doi.org/10.1074/jbc.M808742200
  24. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114: 1752-1761. https://doi.org/10.1172/JCI21625
  25. Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ, Stocker R, Van Remmen H, Kraegen EW, Cooney GJ, Richardson AR, James DE. 2009. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci U S A 106: 17787-17792. https://doi.org/10.1073/pnas.0902380106
  26. Vigilanza P, Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. 2011. Modulation of intracellular glutathione affects adipogenesis in 3T3-L1 cells. J Cell Physiol 226: 2016-2024. https://doi.org/10.1002/jcp.22542
  27. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236: 313-322. https://doi.org/10.1006/bbrc.1997.6943
  28. Kusunoki C, Yang L, Yoshizaki T, Nakagawa F, Ishikado A, Kondo M, Morino K, Sekine O, Ugi S, Nishio Y, Kashiwagi A, Maegawa H. 2013. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes. Biochem Biophys Res Commun 430: 225-230. https://doi.org/10.1016/j.bbrc.2012.10.115
  29. Kim Y, Lee J. 2017. Esculetin inhibits adipogenesis and increases antioxidant activity during adipocyte differentiation in 3T3-L1 cells. Prev Nutr Food Sci 22: 118-123.
  30. Takahashi T, Tabuchi T, Tamaki Y, Kosaka K, Takikawa Y, Satoh T. 2009. Carnosic acid and carnosol inhibit adipocyte differentiation in mouse 3T3-L1 cells through induction of phase2 enzymes and activation of glutathione metabolism. Biochem Biophys Res Commun 382: 549-554. https://doi.org/10.1016/j.bbrc.2009.03.059