DOI QR코드

DOI QR Code

벤조산 유도체와 베타 사이클로덱스트린의 복합체 형성반응에 의한 초음파 완화

Ultrasonic relaxation associated with the complex formation of benzoic acid derivative and β-cyclodextrin

  • 박신 (대구대학교 생명환경학부) ;
  • 배종림 (대구대학교 물리학과)
  • 투고 : 2017.09.15
  • 심사 : 2017.11.29
  • 발행 : 2017.11.30

초록

베타 사이클로덱스트린(${\beta}$-Cyclodextrin, ${\beta}$-CD)(호스트)과 벤조산 유도체(게스트)의 수용액에 대하여 $25^{\circ}C$, 광대역 주파수영역(0.2 MHz ~ 50 MHz)에서 초음파 흡수계수를 측정하여 호스트와 게스트의 복합체 형성반응의 속도론적 연구를 행하였다. 특히 본 연구에서는 1 MHz이하의 초음파 흡수측정이 중요하다. ${\beta}$-CD와 벤조산 유도체의 상호작용에 의한 초음파 완화는 수 MHz영역에서 단일 완화현상의 전형적인 스펙트럼을 보였다. 단일완화현상의 원인은 ${\beta}$-CD와 벤조산 유도체의 복합체 형성반응에 의한 화학평행의 혼란상태에 의한것으로 해석하였다. 게스트 농도에 따른 완화주파수의 의존성으로부터 붕괴 속도상수($k_b=7.48{\times}10^6M^{-1}s^{-1}$), 평형상수($K=68.6M^{-1}$)를 결정하였다. 그리고 파장당 최대흡수치의 의존성으로부터 반응에 의한 표준체적변화(${\Delta}V=10.6{\times}10^{-6}m^3mol^{-1}$)를 구하였다. 또한 게스트 분자의 소수성 그룹이 복합체의 안정성에 중요한 역할을 하는 것을 알았다.

The dynamic interactions between benzoic acid derivative ($pH{\approx}7.0$)(guest) and ${\beta}$-cyclodextrin (${\beta}$-CD)(host) were investigated in an aqueous solutions in terms of ultrasonic absorption in the frequency range 0.2 MHz ~ 50 MHz with emphasis on the low-frequency range below 1 MHz at $25^{\circ}C$. We show that the interaction of ${\beta}$-CD and benzoic acid derivative complies with a typical spectrum of a single relaxation process around a few MHz. The ultrasonic relaxation observed in these solutions was due to a perturbation of a chemical equilibrium related to a reaction of an inclusion complex formed by the host and guest. The rate constant ($k_b=7.48{\times}10^6M^{-1}s^{-1}$) and equilibrium constant ($K=68.6M^{-1}$) were determined from the concentration dependences of benzoic acid on the relaxation frequency. The standard volume change (${\Delta}V=10.6{\times}10^{-6}m^3mol^{-1}$) of the reaction was also computed from the maximum absorption per wavelength. It was found that the hydrophobicity of guest molecules played an important role in the formation of the inclusion complex.

키워드

참고문헌

  1. J. -R. Bae, "Ultrasonic absorption measurements of propionic acid derivative of NSAID and $\beta$-cyclodextrin in aqueous solution," Bull. Kr. Chem. Soc. 37, 826-829 (2016). https://doi.org/10.1002/bkcs.10778
  2. J. -R. Bae, J. K. Kim, and C. W. Lee, "Complex formation of adenosine 3',5'-cyclic monophosphate with $\beta$-cyclodextrin: kinetics and mechanism by ultrasonic relaxation," Bull. Kr. Chem. Soc. 31, 442-446 (2010). https://doi.org/10.5012/bkcs.2010.31.02.442
  3. J. -R. Bae and C. W. Lee, "Low- frequency ultrasonic relaxation of $\beta$-cyclodextrin and adenosine 5'-monophosphate in aqueous solution," Bull. Kr. Chem. Soc. 30, 145-148 (2009). https://doi.org/10.5012/bkcs.2009.30.1.145
  4. J. -R. Bae and J. H. Do, "Ultrasonic relaxation for complexation reactions between $\alpha$-cyclodextrin and pentanol isomers in an aqueous solution," J. Kr. Phys. Soc. 55, 2411-2415 (2009). https://doi.org/10.3938/jkps.55.2411
  5. M. Kondo and S. Nishikawa, "Inclusion kinetics of a nucleotide into a cyclodextrin cavity by means of ultrasonic relaxation," J. Phys. Chem. B, 111, 13451-13454 (2007). https://doi.org/10.1021/jp074555t
  6. S. Nishikawa, M. Kondo, E. Kamimura, and S. Xing, "Ultrasonic relaxation associated with inclusion complex of drugs and $\beta$-cyclodextrin," Bull. Chem. Jpn. 80, 694-698 (2007). https://doi.org/10.1246/bcsj.80.694
  7. J. Szejtli, "Introduction and general overview of cyclohexane chemistry," Chem. Rev. 98, 1743-1753 (1998). https://doi.org/10.1021/cr970022c
  8. J. -R. Bae, M. H. Yi, and J. K. Kim, "Ultrasonic relaxation study in methyl acetate by using the high-Q ultrasonic resonator method," J. Kr. Phys. Soc. 28, 670-673 (2001).
  9. P. K. Choi, "Broadband ultrasonic absorption measurements using optical beam deflection," J. Acoust. Soc. Jpn. (E) 13, 4 (1992).
  10. S. Kato, H. Nomura, and Y. Miyahara, "Ultrasonic relaxation study of aqueous solutions of cyclodextrins," J. Phys. Chem. 89, 5417-5421 (1985). https://doi.org/10.1021/j100271a021
  11. T. Fukahori, M. Kondo, and S. Nishkawa, "Dynamic study of interaction between $\beta$-cyclodextrinand and aspirin by the ultrasonic relaxation method," J. Phys. Chem. B, 110, 4487-4491 (2006).
  12. S. Nishikawa and M. Kondo, "Kinetic study for the inclusion complex of carboxylic acids with cyclodextrin by the ultrasonic relaxation method," J. Phys. Chem. B, 110, 26143-26147 (2006). https://doi.org/10.1021/jp068081u
  13. T. Fukahora, T. Ugawa, and S. Nishikawa, "Molecular recognition kinetics of leucine and glycyl-lecucine by $\beta$-cyclodextrin in aqueous solution in terms of ultrasonic relaxation," J. Phys. Chem. A, 106, 9442-9445 (2002). https://doi.org/10.1021/jp021344+