DOI QR코드

DOI QR Code

Optimization of flow performance by designing orifice shape of outdoor unit of air-conditioner

에어컨 실외기 냉각팬 시스템의 오리피스 형상 설계를 통한 유량 성능 최적화

  • Received : 2017.10.20
  • Accepted : 2017.11.29
  • Published : 2017.11.30

Abstract

The performance of an air conditioner is closely related to the cooling performance of a split-type outdoor unit so that, in most of the relevant preceding studies, the independent performance of an axial fan in an outdoor unit has been studied. However, there is a lack of research on the effects of other components in an outdoor units was rarely investigated. Therefore, in this paper, the effects of the fan orifice among other parts on the flow performance of the outdoor unit was numerically investigated. A virtual fan tester consisting of 18 million grids was developed for highly resolved flow simulation. The unsteady RANS (Reynolds-averaged Navier-Stokes) equations are numerically solved by using finite-volume CFD (Computational Fluid Dynamics) techniques. In order to verify the validity of the numerical methods, the predicted P-Q curve of the cooling fan in a full outdoor unit is compared with the measured one. Optimization of orifice shape was carried out for maximum flow performance of the outdoor unit using the validated numerical method.

에어컨의 성능은 분리형 실외기의 냉각 성능과 밀접한 관련이 있으며, 그에 따라 대다수의 관련 선행 연구에서는 실외기 내부 축류팬의 단독 성능에 대한 연구를 진행하였다. 하지만 축류팬을 제외한 실외기 내부 여러 구성요소의 영향에 대한 연구는 부족한 실정이다. 따라서 본 논문에서는 여러 요소 중 팬 오리피스가 실외기 유동 성능에 미치는 영향을 수치적으로 분석하였다. 고정밀 유동장 해석을 위해 약 1800만 개의 격자로 구성된 가상 팬 테스터를 개발하고, V-LES의 일종인 비정상 RANS(Reynolds-averaged Navier-Stokes) 방정식을 CFD(Computational Fluid Dynamics) 기법에 기초하여 해석하였다. 수치 해석의 유효성을 확인하기 위해서 실험을 통해 측정한 실외기 시스템의 P-Q 곡선을 가상 팬 테스터를 사용한 수치 해석 결과와 비교하였다. 유효성을 검증한 수치 기법을 이용하여 실외기 유량 성능을 최대화할 수 있는 오리피스 형상 최적 설계를 수행하였다.

Keywords

References

  1. C. L. Jiang, J. P. Chen, Z. J. Chen, J. Tian, H. OuYang, and Z.H. Du, "Experimental and numerical study on aeroacoustic sound of axial flow fan in room air conditioner," Appl. Acoust. 68, 458-472 (2007). https://doi.org/10.1016/j.apacoust.2005.12.011
  2. X. Zhao, J. Sun, and Z. Zhang, "Prediction and measurement of axial flow fan aerodynamic and aeroacoustic performance in a split-type air-conditioner outdoor unit," Int. J. Refrig. 36, 1098-1108 (2013). https://doi.org/10.1016/j.ijrefrig.2012.11.024
  3. F. Gue, C. Cheong, and T. H. Kim, "Development of low-noise axial cooling fans in a household refrigerator," J. Mech. Sci. Technol. 25, 2995-3004 (2011). https://doi.org/10.1007/s12206-011-0818-9
  4. S. Lee, S. Heo, and C. Cheong, "Prediction and reduction of internal blade-passing frequency noise of the centrifugal fan in a refrigerator," Int. J. Refrig. 33, 1129-1141 (2010). https://doi.org/10.1016/j.ijrefrig.2010.03.006
  5. D. Shin, S. Ryu, C. Cheong, T. Kim, and J. Jung., "Development of high-performance/low-noise centrifugal fan circulating cold air inside a household refrigerator by reduction of vortex flow" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 26, 428-435 (2016). https://doi.org/10.5050/KSNVE.2016.26.4.428
  6. H. Huang, Z. Wang, and Z. Liu, "Investigation of aerodynamic performance of small axial flow fan coupled with deflecting ring," Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci. 231, 1839-1848 (2017). https://doi.org/10.1177/0954406215622792
  7. V. Kolar, "Brief notes on vortex identification," 8th WSEAS International Conference on Fluid Mechanics, 23-28 (2011).
  8. R. C. K. Leung and R. M. C. So, "Noise generation of blade-vortex resonance," J. Sound Vib. 245, 217-237 (2001). https://doi.org/10.1006/jsvi.2001.3575